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Abstract: To address communication barriers between deaf-mute individuals and non-sign
language users, a gesture-based sign language translation system was developed for the real-time
translation of sign language into text or speech. The system utilizes the YOLOv9 model and transfer
learning techniques, integrating deep learning and natural language processing (NLP) to achieve
gesture recognition and translation. The system design encompasses data preprocessing, feature
extraction, model training and optimization, and real-time translation processing modules,
adopting an end-to-end architecture to optimize user experience. Experimental results demonstrate
that the proposed system exhibits superior performance in sign language recognition accuracy,
response speed, and translation quality.
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1. Introduction

Sign language is the most critical communication tool in the daily lives of the deaf
community. Its unique mode of expression conveys not only linguistic information but
also rich emotional and cultural connotations. However, due to the complexity and
diversity of sign language gestures, as well as significant differences in grammar and
expression habits compared to spoken languages, communication between deaf
individuals and the hearing population has long faced significant barriers.

In recent years, the rapid development of Information Technology and Artificial
Intelligence has provided new directions for sign language translation research.
Nevertheless, existing technologies still face numerous limitations. Traditional statistical

Published: 13 January 2026 learning-based methods, such as SVM and HMM, show certain advantages in processing

simple gestures but lack sufficient recognition accuracy and generalization capability
av when dealing with complex dynamic gesture sequences and semantic translation
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Furthermore, most existing sign language translation systems rely on Autoregressive
Models. While their word-by-word translation mechanism ensures semantic accuracy, the
inference speed is often slow, making it difficult to meet real-time interaction demands
[5].
To address these issues, this study proposes a sign language translation system based
on gesture recognition [6]. We employ an improved YOLOv9 model to achieve precise
detection and recognition of sign language gestures. Additionally, we utilize a Non-
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Autoregressive Model (NAR) based on the Transformer architecture to achieve efficient
sign-to-text conversion [7]. YOLOvV9 offers significant improvements in detection
accuracy and efficiency. By integrating Multimodal Alignment Technology, we further
enhance the correlation between gestures and semantics, addressing recognition
challenges under complex backgrounds and dynamic lighting conditions [8]. To satisfy
real-time requirements, the system introduces Hardware Acceleration and latency
optimization strategies, utilizing image denoising and frame buffering mechanisms to
significantly reduce recognition latency [9]. The ultimate goal is to develop an efficient,
precise, and multi-language adaptable sign language translation system to support
communication for the deaf community and promote the application of this technology
in education, healthcare, and public services [10].

2. YOLOvV9 Model

YOLOVY, proposed in February 2024, is a single-stage object detection model that
retains the classic "Backbone — Neck — Head" pipeline. Its core innovations are
Programmable Gradient Information (PGI) and the Generalized Efficient Layer
Aggregation Network (GELAN).

As shown in Figure 1, the backbone network of YOLOV9 is based on the lightweight
CSPDarknet x 0.75. Through five down-sampling operations, it generates five levels of
feature maps, Ps — P7. The GELAN architecture is embedded into each residual block,
preserving input information through reversible residual paths. This alleviates
information bottlenecks and the vanishing gradient problem, while simultaneously
enhancing the perception capability for targets of different scales.
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Figure 1. YOLOV9 model structure.
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3. Improved YOLOvV9 Model

Aiming at the problems of small target size, rich posture changes, and strong
background interference in gesture recognition tasks, the original YOLOv9 model is prone
to missed detection and false detection in complex environments, especially in scenes with
overlapping fingers, rapid movement, or occlusion. Therefore, considering the balance
between detection accuracy, model lightweight, and inference efficiency, the following
improvements are made on the basis of YOLOVY (see Figure 2).
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Figure 2. The architecture of the YOLOv9 model.

The backbone network of the original YOLOvV9 model has insufficient ability to
capture fine-grained features in dynamic gesture recognition tasks, especially in complex
backgrounds and occlusion conditions, which easily leads to vague expression of key
regions. To solve this problem, this paper introduces the RFCBAMConv module to replace
the original C3k2. This module integrates a multi-scale convolution structure with a
channel-spatial attention mechanism: first, it uses parallel convolution branches of 3 x 3
and 5 x 5 to extract multi-scale features, enhancing the modeling ability of different sizes
and local structures; then, it introduces a combined channel attention and spatial attention
mechanism (CBAM), which effectively highlights the response of key hand regions while
maintaining the original feature channel information, and suppresses redundant
background noise interference. On the whole, RECBAMConv greatly improves the
model's ability to perceive the details of gesture actions and enhances the robustness of
targets in complex postures and rapid movement scenes without significantly increasing
the computational overhead. After introducing RFECBAMConv, the model shows better
detection accuracy and stability on multiple small-scale gesture test sets. The structure of
the improved model is shown in Figure. 3.
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Figure 3. RFCBAMConv model structure.

3.1. Integration of the RFCBAMConv Module

During the design of the RFECBAMConv module, the focus was placed on improving
feature discrimination and robustness under complex visual conditions. The design
concept draws on the idea of jointly modeling channel-wise and spatial information to
guide the network toward more informative regions, thereby enhancing its ability to
capture fine-grained action features and suppress irrelevant background interference [11].
By embedding attention-based feature recalibration into the convolutional process, the
module strengthens the representation of salient features while maintaining overall
structural stability.

At the same time, the introduction of dilated convolution provides effective support
for expanding the receptive field without increasing parameter complexity or reducing
feature map resolution. This approach enables the model to capture contextual
information at multiple scales and improves its adaptability to variations in target size
and spatial distribution [12]. On this basis, a parallel branch structure that combines 3 x 3
and 5 x 5 convolution kernels is employed, allowing the module to integrate
complementary local and broader contextual features. As a result, the RECBAMConv
module maintains strong feature representation capability even in scenarios with complex
backgrounds and dynamic variations.

In the construction of the GPFM module, the design emphasizes multi-scale feature
aggregation and efficient information fusion. The spatial pyramid-based idea is adopted
as a reference, while traditional pooling operations are replaced with multi-scale
convolution to alleviate the loss of spatial information that often occurs during
downsampling [13]. This modification helps preserve fine-grained spatial details and
enhances the continuity of feature representations across scales.

Furthermore, cross-layer feature fusion strategies are incorporated to improve the
robustness and expressiveness of the model. The integration of features from different
depths enables the network to effectively combine high-level semantic information with
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low-level spatial details, thereby improving overall feature consistency and stability [14].
In addition, the effectiveness of multi-scale dilated convolution in capturing contextual
information has been demonstrated in related tasks, providing methodological support
for employing dilated convolutions with different dilation rates in the GPFM module to
further expand the receptive field [15]. To enhance the effectiveness of feature integration,
a learnable weighted fusion strategy is introduced, which allows the network to
adaptively balance the contributions of features from different paths and scales, drawing
on established insights into feature fusion mechanisms [16].

In summary, the RFCBAMConv and GPFM modules proposed in this study jointly
enhance the model's ability to extract discriminative and robust features by integrating
attention mechanisms, multi-scale convolution, and adaptive feature fusion strategies.
Through these designs, the overall detection accuracy and robustness of the model in
dynamic gesture recognition tasks are effectively improved, particularly under complex
background conditions and varying spatial scales.

3.2. Improved Feature Fusion Module: GPFM

To address insufficient robustness caused by complex backgrounds and gesture
deformation, we incorporate the Global Perception Feature Module (GPFM) based on
receptive field expansion and adaptive feature fusion theory.

GPFEM operates as follows (see Figure 4):

Weighted
Fusion

Conv 1x1

Conv 1x1
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Figure 4. GPFM model structure.

Dilated Convolutions: Upon receiving multi-scale feature maps from the backbone,
GPFM applies parallel dilated convolutions with three dilation rates (d = 1, 3, 5). This
significantly expands the receptive field while maintaining resolution, balancing global
semantics with local details.

Weighted Fusion: A learnable weighted fusion layer is introduced to adaptively
weight high-frequency information from shallow layers and low-frequency semantics
from deep layers.

Pyramid Convolution: Finally, a pyramid convolution sequence (1 x 1 3x3 1x
1) enhances interaction in channel and spatial dimensions.

This design avoids spatial information loss caused by pooling and improves
detection robustness. Experimental results on the EgoGesture dataset show that the model
with GPFM improved mAP@0.5 by approximately 3.2% compared to the baseline.
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4. Gesture Dataset Introduction
4.1. Dataset Selection and Creation

Current public gesture datasets are generally applied to dynamic gesture recognition,
while datasets for static gesture recognition are scarce. Common examples include the
American Sign Language (ASL) dataset and the NUS-II gesture dataset. However, due to
the small sample size of NUS-II (only 2,750 images), it was not used in this experiment.

This experiment utilizes the SY Dataset, constructed by our team. To ensure data
validity, the SY dataset comprises 3,612 items in the training set, 344 in the validation set,
and 172 in the test set. Additionally, we collected datasets suitable for training and
evaluating YOLOVS to compare with our improved YOLOvVY model.

4.2. Visual Comparison of Detection Performance

To systematically evaluate the proposed algorithm, we conducted comprehensive
comparative experiments using YOLOVS as the baseline against the improved YOLOv9
algorithm. The tests covered gesture instances with varying complexity, occlusion
conditions, and scales.

Visual comparison results (Figure 5) indicate that the improved YOLOvV9 model
outperforms the baseline in all test scenarios:

Figure 5. Gesture dataset.
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Gesture Set 1: Enhanced capability to capture continuous gestures and edge-blurred
targets.

Gesture Set 2: Superior anti-interference capability and feature discrimination in
scenarios with occlusion and complex backgrounds.

Gesture Set 3: Improved sensitivity and localization precision for small-scale gestures.

Overall, the improved model exhibited higher recognition robustness and accuracy
across different gesture scenarios, particularly showing distinct advantages in the
representation of weak features, the recovery of occluded targets, and the discrimination
of similar categories. The results indicate that the introduced improvement mechanisms
effectively enhanced the model's ability to extract gesture semantic information,
providing a more reliable technical foundation for sign language translation systems in
complex real-world scenarios. YOLOv9

4.3. Dataset Characteristics

The dataset ensures experimental diversity through varying lighting conditions,
background environments, presentation angles, and distances. Furthermore, class balance
is maintained across training and test sets to avoid model bias.

5. Simulation Experiments and Result Analysis
5.1. Experimental Parameters and Environment

The experimental platform adopts the Windows 11 64-bit operating system,
equipped with a 12th Gen Intel (R) Core (TM) i9-12900H (2.50 GHz) processor. The system
memory is 16GB, and the graphics card is an Nvidia GeForce RTX 3060 with 6GB of video
memory. The PyTorch framework version is 1.11.0+cul13, and the Python version is 3.8.20.
The Batch size is set to 16, image size to $640\ times640$, and epochs to 300. The network
structure used in the experiment is modified based on the official YOLOV9 open-source
code, loading its pre-trained model weights, and completing model training and
validation under a unified hyperparameter configuration.

5.2. Detection Metrics

To detect targets more accurately, a comprehensive and precise evaluation metric
system is required. Among them, mAP@0.5, precision, recall, parameter count, and
GFLOPs are key metrics for measuring model performance and efficiency:

Mean Average Precision (nAP): As a comprehensive performance metric, mAP fuses
the model's precision and recall. mAP@0.5 focuses on the average detection precision of
all categories when the IoU threshold is 0.5; it evaluates model performance more strictly,
where a higher mAP value represents superior detection effects. Precision: Starting from
the perspective of detection results, precision refers to the proportion of the number of
correctly detected targets to the total number of detected targets, reflecting the accuracy
of the model's detection results. Recall: Based on real targets, recall measures the
proportion of the number of targets the model can detect to the total number of real targets,
embodying the model's ability to capture real targets. Parameters: Used to evaluate the
scale and complexity of the model, obtained by accumulating the weight parameter values
of each layer of the model. A smaller parameter count implies a more lightweight model,
while a larger parameter count, though helpful for learning complex features, will occupy
more storage and computational resources. GFLOPs: As a metric for measuring the
model's computational complexity and execution efficiency, GFLOPs represents the
number of floating-point operations the model executes per second; the value intuitively
reflects the complexity and efficiency level of the model's operations.

5.3. Visualization of Experimental Data

Through multiple experiments, the results were organized into visual charts to
facilitate analysis and comparison. Figure 6 shows the variation curves of the loss function
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and evaluation metrics during the target detection model training process. According to
the analysis of experimental results, it can be known that during the training process, the
model's learning effects for tasks such as bounding box prediction and category
classification gradually improved; performance on the validation set was stable with
small errors. The comprehensive performance, such as detection precision and the ability
to identify positive and negative samples, is constantly improving.
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Figure 6. The change curves of loss functions and evaluation metrics during the training process of
the object detection model.

The confusion matrix shown in Figure. 7 further reveals the model's performance in
classification tasks. The color gradient of the matrix reflects the prediction proportion,
where dark blue indicates a high prediction proportion and light color indicates a low
prediction proportion. Observing the matrix, it can be seen that most dark blue squares
are located on the diagonal.
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Figure 7. confusion matrix.
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The analysis results of comprehensive indicators and confusion matrix show that the
model can achieve high detection and classification accuracy in most categories, but there
is still room for optimization in distinguishing a few specific categories. In the future, the
performance of the model in confusing categories can be improved through further data
augmentation, feature extraction optimization, or category weight adjustment.

5.4. Comparative Experiments

Table 1 compares the detection results of YOLOvS5, YOLOv6, YOLOvV7, YOLOVS, and
the proposed model (Ours). According to the data comparison of the detection results, the
YOLOVY9 model integrated with multiple modules has made great progress in various
aspects and still performs excellently in real-time detection. Therefore, in subsequent
experiments, our team chose to integrate YOLOv9 with the RECBAMConv module and
the GPFM module to improve the detection effect of target precision detection.

Table 1. Comparative experiments of different models.

Model mAP50-90 FPS
YOLOvV5 75.7% 52
YOLOvV6 77.9% 50
YOLOvV7 78.2% 55
YOLOvV8 81.6% 58

Ours 90.3% 62

To comprehensively verify the improvement effect of each improved module on
model performance, ablation experiments are conducted on the proposed improved
model on the self-built SY dataset. These experiments are based on the YOLOvV9 model,
and the improved methods are integrated step by step according to the modules to
quantify the contribution of each module to detection accuracy and efficiency (see Table
2).

Table 2. Ablation experiments.

Baseline RFCBAMConv GPFM  mAP50-90 recall precision
\ 0.757 0.888 0.868
\ \ 0.862 0.947 0.944
\ \ \ 0.903 0.979 0.980

Experimental results indicate that the synergy of modules can significantly enhance
model detection capability. First, after adding the RFCBAMConv module to the baseline
YOLOV9 model, mAP@50-90 increased by 10.5%. This indicates that the RFCBAMConv
module effectively mitigated the information loss problem of traditional convolution in
multi-scale feature fusion, significantly enhancing sensitivity and adaptability to targets
of different scales. Compared with the baseline, it eliminated extreme cases of zero
recognition rate, proving that the RFECBAMConv module played an important role in
feature representation equalization.

Secondly, examining the experimental data when adding the GPEM module to the
baseline YOLOV9 model, mAP@0.5 increased by 4.9%. This indicates that adopting the
GPFM module not only reduced the loss of detailed information but also improved the
ability to capture multi-scale fine-grained features, contributing to the stable detection of
small targets in complex scenes.

Finally, when the baseline YOLOv9 model is integrated with both the RFCBAMConv
module and the GPFM module, a technical complementarity is formed. RECBAMConv
focuses on local feature refinement and attention focusing, while the GPFM module
emphasizes global feature equalization. The combined use of both forms a complete
feature optimization solution. Technically, it ensures that key gestures are rarely missed;
furthermore, stable low-confidence thresholds can reduce false triggers. In terms of user
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experience, it can bring a smoother real-time translation experience, reducing translation
interruptions caused by detection failures (see Table 3).

Table 3. Comparative experiments of various model versions.

Model Version mAP@0.5 Precision Recall mAP@0.5:0.95
YOLOvV9 Baseline 92.7% 97.8% 96.9% 75.7%
+RFCBAMConv 94.1% 98.0% 97.2% 86.2%
+GPFM 97.6% 98.1% 97.4% 80.6%
Full Model 98.5% 98.2% 97.6% 90.3%

The loss function of the target detection model YOLOV9 consists of three parts:
Localization Loss, Confidence Loss, and Classification Loss. Their expressions are as
follows:

Localization Loss:

Lie = 2t Lionjp (0 = 20 + 0 = 907 + (Wi = W)* + (hy — h))?) (0.1)

Confidence Loss:

Lconf = ngzl 1{obji}(CAi - Ci)z + Anoobj Z{vzl 1{noobji}(1 - CAL’)Z (02)

Classification Loss:

Les = 2iLy Lonjy Zgzl(pc,i log(Pc:)) (0.3)

Gesture Recognition Model: Adopts the acoustic model CNN+CTC (Connectionist
Temporal Classification) to recognize each frame in the sign language video. The
Convolutional Neural Network (CNN) is used to extract gesture features, and CTC is used
to avoid the need for forced alignment of gesture sequences.

In the process of system acceleration, the Speed-up Ratio (S) is defined to measure
the performance improvement of hardware acceleration, with the formula as follows:

— Thaseline (04)

Taptimized
Hardware acceleration can ensure the real-time performance of gesture recognition
and translation. Model optimization is used to reduce computational overhead and
improve system response speed. Caching and latency optimization can reduce
unnecessary computational delays during the recognition process, ensuring smooth real-
time feedback.

6. Conclusion

This study addresses core challenges in sign language translation systems, such as
insufficient environmental robustness, real-time bottlenecks, and lack of multimodal
synergy, proposing a sign language translation system based on an improved YOLOv9
and Transformer-NAR architecture. By introducing the RFCBAMConv module to
enhance gesture detail perception capability, designing the GPFM feature fusion module
to optimize adaptability in complex scenes, and combining with a non-autoregressive
translation model to achieve single-step parallel decoding.

The system solves problems such as missed gesture detection under dynamic
lighting, high latency in autoregressive translation, and multimodal semantic
fragmentation, providing a low-latency, high-precision cross-modal communication tool
for the deaf-mute population. Future work will focus on transfer learning for sign
language dialects, enhancement of neuro-symbolic reasoning, and optimization of cross-
lingual generalization capabilities, further promoting the inclusive implementation of
barrier-free technology in scenarios such as education and healthcare.
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