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Abstract: To address communication barriers between deaf-mute individuals and non-sign 

language users, a gesture-based sign language translation system was developed for the real-time 

translation of sign language into text or speech. The system utilizes the YOLOv9 model and transfer 

learning techniques, integrating deep learning and natural language processing (NLP) to achieve 

gesture recognition and translation. The system design encompasses data preprocessing, feature 

extraction, model training and optimization, and real-time translation processing modules, 

adopting an end-to-end architecture to optimize user experience. Experimental results demonstrate 

that the proposed system exhibits superior performance in sign language recognition accuracy, 

response speed, and translation quality. 
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1. Introduction 

Sign language is the most critical communication tool in the daily lives of the deaf 
community. Its unique mode of expression conveys not only linguistic information but 

also rich emotional and cultural connotations. However, due to the complexity and 
diversity of sign language gestures, as well as significant differences in grammar and 
expression habits compared to spoken languages, communication between deaf 

individuals and the hearing population has long faced significant barriers. 
In recent years, the rapid development of Information Technology and Artificial 

Intelligence has provided new directions for sign language translation research. 
Nevertheless, existing technologies still face numerous limitations. Traditional statistical 
learning-based methods, such as SVM and HMM, show certain advantages in processing 

simple gestures but lack sufficient recognition accuracy and generalization capability 
when dealing with complex dynamic gesture sequences and semantic translation 

requirements [1]. 
With the rise of deep learning, CNN and RNN have been widely applied to sign 

language recognition tasks, demonstrating significant advantages in feature extraction 

and temporal modeling [2,3]. For instance, the YOLO series, known for efficient object 
detection capabilities, has been introduced to the field of gesture recognition. However, 

early YOLO versions exhibited insufficient robustness in complex backgrounds and low-
light scenarios [4]. 

Furthermore, most existing sign language translation systems rely on Autoregressive 

Models. While their word-by-word translation mechanism ensures semantic accuracy, the 
inference speed is often slow, making it difficult to meet real-time interaction demands 

[5]. 
To address these issues, this study proposes a sign language translation system based 

on gesture recognition [6]. We employ an improved YOLOv9 model to achieve precise 

detection and recognition of sign language gestures. Additionally, we utilize a Non-
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Autoregressive Model (NAR) based on the Transformer architecture to achieve efficient 
sign-to-text conversion [7]. YOLOv9 offers significant improvements in detection 
accuracy and efficiency. By integrating Multimodal Alignment Technology, we further 

enhance the correlation between gestures and semantics, addressing recognition 
challenges under complex backgrounds and dynamic lighting conditions [8]. To satisfy 

real-time requirements, the system introduces Hardware Acceleration and latency 
optimization strategies, utilizing image denoising and frame buffering mechanisms to 
significantly reduce recognition latency [9]. The ultimate goal is to develop an efficient, 

precise, and multi-language adaptable sign language translation system to support 
communication for the deaf community and promote the application of this technology 

in education, healthcare, and public services [10]. 

2. YOLOv9 Model 

YOLOv9, proposed in February 2024, is a single-stage object detection model that 
retains the classic "Backbone → Neck → Head" pipeline. Its core innovations are 

Programmable Gradient Information (PGI) and the Generalized Efficient Layer 
Aggregation Network (GELAN). 

As shown in Figure 1, the backbone network of YOLOv9 is based on the lightweight 

CSPDarknet × 0.75. Through five down-sampling operations, it generates five levels of 
feature maps, P3 – P7. The GELAN architecture is embedded into each residual block, 

preserving input information through reversible residual paths. This alleviates 
information bottlenecks and the vanishing gradient problem, while simultaneously 

enhancing the perception capability for targets of different scales. 

 

Figure 1. YOLOv9 model structure. 
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3. Improved YOLOv9 Model 

Aiming at the problems of small target size, rich posture changes, and strong 

background interference in gesture recognition tasks, the original YOLOv9 model is prone 
to missed detection and false detection in complex environments, especially in scenes with 

overlapping fingers, rapid movement, or occlusion. Therefore, considering the balance 
between detection accuracy, model lightweight, and inference efficiency, the following 
improvements are made on the basis of YOLOv9 (see Figure 2). 

 

Figure 2. The architecture of the YOLOv9 model. 

The backbone network of the original YOLOv9 model has insufficient ability to 

capture fine-grained features in dynamic gesture recognition tasks, especially in complex 
backgrounds and occlusion conditions, which easily leads to vague expression of key 

regions. To solve this problem, this paper introduces the RFCBAMConv module to replace 
the original C3k2. This module integrates a multi-scale convolution structure with a 
channel-spatial attention mechanism: first, it uses parallel convolution branches of 3 × 3 

and 5 × 5 to extract multi-scale features, enhancing the modeling ability of different sizes 
and local structures; then, it introduces a combined channel attention and spatial attention 

mechanism (CBAM), which effectively highlights the response of key hand regions while 
maintaining the original feature channel information, and suppresses redundant 
background noise interference. On the whole, RFCBAMConv greatly improves the 

model's ability to perceive the details of gesture actions and enhances the robustness of 
targets in complex postures and rapid movement scenes without significantly increasing 

the computational overhead. After introducing RFCBAMConv, the model shows better 
detection accuracy and stability on multiple small-scale gesture test sets. The structure of 
the improved model is shown in Figure. 3. 
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Figure 3. RFCBAMConv model structure. 

3.1. Integration of the RFCBAMConv Module 

During the design of the RFCBAMConv module, the focus was placed on improving 

feature discrimination and robustness under complex visual conditions. The design 
concept draws on the idea of jointly modeling channel-wise and spatial information to 
guide the network toward more informative regions, thereby enhancing its ability to 

capture fine-grained action features and suppress irrelevant background interference [11]. 
By embedding attention-based feature recalibration into the convolutional process, the 

module strengthens the representation of salient features while maintaining overall 
structural stability. 

At the same time, the introduction of dilated convolution provides effective support 

for expanding the receptive field without increasing parameter complexity or reducing 
feature map resolution. This approach enables the model to capture contextual 

information at multiple scales and improves its adaptability to variations in target size 
and spatial distribution [12]. On this basis, a parallel branch structure that combines 3 × 3 
and 5 × 5 convolution kernels is employed, allowing the module to integrate 

complementary local and broader contextual features. As a result, the RFCBAMConv 
module maintains strong feature representation capability even in scenarios with complex 

backgrounds and dynamic variations. 
In the construction of the GPFM module, the design emphasizes multi-scale feature 

aggregation and efficient information fusion. The spatial pyramid-based idea is adopted 

as a reference, while traditional pooling operations are replaced with multi-scale 
convolution to alleviate the loss of spatial information that often occurs during 

downsampling [13]. This modification helps preserve fine-grained spatial details and 
enhances the continuity of feature representations across scales. 

Furthermore, cross-layer feature fusion strategies are incorporated to improve the 

robustness and expressiveness of the model. The integration of features from different 
depths enables the network to effectively combine high-level semantic information with 
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low-level spatial details, thereby improving overall feature consistency and stability [14]. 
In addition, the effectiveness of multi-scale dilated convolution in capturing contextual 
information has been demonstrated in related tasks, providing methodological support 

for employing dilated convolutions with different dilation rates in the GPFM module to 
further expand the receptive field [15]. To enhance the effectiveness of feature integration, 

a learnable weighted fusion strategy is introduced, which allows the network to 
adaptively balance the contributions of features from different paths and scales, drawing 
on established insights into feature fusion mechanisms [16]. 

In summary, the RFCBAMConv and GPFM modules proposed in this study jointly 
enhance the model's ability to extract discriminative and robust features by integrating 

attention mechanisms, multi-scale convolution, and adaptive feature fusion strategies. 
Through these designs, the overall detection accuracy and robustness of the model in 
dynamic gesture recognition tasks are effectively improved, particularly under complex 

background conditions and varying spatial scales. 

3.2. Improved Feature Fusion Module: GPFM 

To address insufficient robustness caused by complex backgrounds and gesture 
deformation, we incorporate the Global Perception Feature Module (GPFM) based on 

receptive field expansion and adaptive feature fusion theory. 
GPFM operates as follows (see Figure 4): 

 

Figure 4. GPFM model structure. 

Dilated Convolutions: Upon receiving multi-scale feature maps from the backbone, 
GPFM applies parallel dilated convolutions with three dilation rates (d = 1, 3, 5). This 
significantly expands the receptive field while maintaining resolution, balancing global 

semantics with local details. 
Weighted Fusion: A learnable weighted fusion layer is introduced to adaptively 

weight high-frequency information from shallow layers and low-frequency semantics 
from deep layers. 

Pyramid Convolution: Finally, a pyramid convolution sequence (1 × 1 3 × 3 1 × 

1) enhances interaction in channel and spatial dimensions. 
This design avoids spatial information loss caused by pooling and improves 

detection robustness. Experimental results on the EgoGesture dataset show that the model 
with GPFM improved mAP@0.5 by approximately 3.2% compared to the baseline.  
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4. Gesture Dataset Introduction 

4.1. Dataset Selection and Creation 

Current public gesture datasets are generally applied to dynamic gesture recognition, 

while datasets for static gesture recognition are scarce. Common examples include the 
American Sign Language (ASL) dataset and the NUS-II gesture dataset. However, due to 

the small sample size of NUS-II (only 2,750 images), it was not used in this experiment. 
This experiment utilizes the SY Dataset, constructed by our team. To ensure data 

validity, the SY dataset comprises 3,612 items in the training set, 344 in the validation set, 

and 172 in the test set. Additionally, we collected datasets suitable for training and 
evaluating YOLOv8 to compare with our improved YOLOv9 model. 

4.2. Visual Comparison of Detection Performance 

To systematically evaluate the proposed algorithm, we conducted comprehensive 

comparative experiments using YOLOv8 as the baseline against the improved YOLOv9 
algorithm. The tests covered gesture instances with varying complexity, occlusion 

conditions, and scales. 
Visual comparison results (Figure 5) indicate that the improved YOLOv9 model 

outperforms the baseline in all test scenarios: 

 

Figure 5. Gesture dataset. 
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Gesture Set 1: Enhanced capability to capture continuous gestures and edge-blurred 
targets. 

Gesture Set 2: Superior anti-interference capability and feature discrimination in 

scenarios with occlusion and complex backgrounds. 
Gesture Set 3: Improved sensitivity and localization precision for small-scale gestures. 

Overall, the improved model exhibited higher recognition robustness and accuracy 
across different gesture scenarios, particularly showing distinct advantages in the 
representation of weak features, the recovery of occluded targets, and the discrimination 

of similar categories. The results indicate that the introduced improvement mechanisms 
effectively enhanced the model's ability to extract gesture semantic information, 

providing a more reliable technical foundation for sign language translation systems in 
complex real-world scenarios. YOLOv9 

4.3. Dataset Characteristics 

The dataset ensures experimental diversity through varying lighting conditions, 

background environments, presentation angles, and distances. Furthermore, class balance 
is maintained across training and test sets to avoid model bias. 

5. Simulation Experiments and Result Analysis 

5.1. Experimental Parameters and Environment 

The experimental platform adopts the Windows 11 64-bit operating system, 

equipped with a 12th Gen Intel (R) Core (TM) i9-12900H (2.50 GHz) processor. The system 
memory is 16GB, and the graphics card is an Nvidia GeForce RTX 3060 with 6GB of video 

memory. The PyTorch framework version is 1.11.0+cu113, and the Python version is 3.8.20. 
The Batch size is set to 16, image size to $640\times640$, and epochs to 300. The network 
structure used in the experiment is modified based on the official YOLOv9 open-source 

code, loading its pre-trained model weights, and completing model training and 
validation under a unified hyperparameter configuration. 

5.2. Detection Metrics 

To detect targets more accurately, a comprehensive and precise evaluation metric 

system is required. Among them, mAP@0.5, precision, recall, parameter count, and 
GFLOPs are key metrics for measuring model performance and efficiency:  

Mean Average Precision (mAP): As a comprehensive performance metric, mAP fuses 
the model's precision and recall. mAP@0.5 focuses on the average detection precision of 
all categories when the IoU threshold is 0.5; it evaluates model performance more strictly, 

where a higher mAP value represents superior detection effects. Precision: Starting from 
the perspective of detection results, precision refers to the proportion of the number of 

correctly detected targets to the total number of detected targets, reflecting the accuracy 
of the model's detection results. Recall: Based on real targets, recall measures the 
proportion of the number of targets the model can detect to the total number of real targets, 

embodying the model's ability to capture real targets. Parameters: Used to evaluate the 
scale and complexity of the model, obtained by accumulating the weight parameter values 

of each layer of the model. A smaller parameter count implies a more lightweight model, 
while a larger parameter count, though helpful for learning complex features, will occupy 
more storage and computational resources. GFLOPs: As a metric for measuring the 

model's computational complexity and execution efficiency, GFLOPs represents the 
number of floating-point operations the model executes per second; the value intuitively 

reflects the complexity and efficiency level of the model's operations. 

5.3. Visualization of Experimental Data 

Through multiple experiments, the results were organized into visual charts to 
facilitate analysis and comparison. Figure 6 shows the variation curves of the loss function 
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and evaluation metrics during the target detection model training process. According to 
the analysis of experimental results, it can be known that during the training process, the 
model's learning effects for tasks such as bounding box prediction and category 

classification gradually improved; performance on the validation set was stable with 
small errors. The comprehensive performance, such as detection precision and the ability 

to identify positive and negative samples, is constantly improving. 

 

Figure 6. The change curves of loss functions and evaluation metrics during the training process of 
the object detection model. 

The confusion matrix shown in Figure. 7 further reveals the model's performance in 
classification tasks. The color gradient of the matrix reflects the prediction proportion, 

where dark blue indicates a high prediction proportion and light color indicates a low 
prediction proportion. Observing the matrix, it can be seen that most dark blue squares 
are located on the diagonal. 

 

Figure 7. confusion matrix. 
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The analysis results of comprehensive indicators and confusion matrix show that the 
model can achieve high detection and classification accuracy in most categories, but there 
is still room for optimization in distinguishing a few specific categories. In the future, the 

performance of the model in confusing categories can be improved through further data 
augmentation, feature extraction optimization, or category weight adjustment. 

5.4. Comparative Experiments 

Table 1 compares the detection results of YOLOv5, YOLOv6, YOLOv7, YOLOv8, and 

the proposed model (Ours). According to the data comparison of the detection results, the 
YOLOv9 model integrated with multiple modules has made great progress in various 

aspects and still performs excellently in real-time detection. Therefore, in subsequent 
experiments, our team chose to integrate YOLOv9 with the RFCBAMConv module and 
the GPFM module to improve the detection effect of target precision detection. 

Table 1. Comparative experiments of different models. 

Model mAP50-90 FPS 

YOLOv5 75.7% 52 

YOLOv6 77.9% 50 

YOLOv7 78.2% 55 

YOLOv8 81.6% 58 

Ours 90.3% 62 

To comprehensively verify the improvement effect of each improved module on 
model performance, ablation experiments are conducted on the proposed improved 
model on the self-built SY dataset. These experiments are based on the YOLOv9 model, 

and the improved methods are integrated step by step according to the modules to 
quantify the contribution of each module to detection accuracy and efficiency (see Table 

2). 

Table 2. Ablation experiments. 

Baseline RFCBAMConv GPFM mAP50-90 recall precision 

√   0.757 0.888 0.868 

√ √  0.862 0.947 0.944 

√ √ √ 0.903 0.979 0.980 

Experimental results indicate that the synergy of modules can significantly enhance 

model detection capability. First, after adding the RFCBAMConv module to the baseline 
YOLOv9 model, mAP@50-90 increased by 10.5%. This indicates that the RFCBAMConv 

module effectively mitigated the information loss problem of traditional convolution in 
multi-scale feature fusion, significantly enhancing sensitivity and adaptability to targets 
of different scales. Compared with the baseline, it eliminated extreme cases of zero 

recognition rate, proving that the RFCBAMConv module played an important role in 
feature representation equalization. 

Secondly, examining the experimental data when adding the GPFM module to the 
baseline YOLOv9 model, mAP@0.5 increased by 4.9%. This indicates that adopting the 
GPFM module not only reduced the loss of detailed information but also improved the 

ability to capture multi-scale fine-grained features, contributing to the stable detection of 
small targets in complex scenes. 

Finally, when the baseline YOLOv9 model is integrated with both the RFCBAMConv 
module and the GPFM module, a technical complementarity is formed. RFCBAMConv 
focuses on local feature refinement and attention focusing, while the GPFM module 

emphasizes global feature equalization. The combined use of both forms a complete 
feature optimization solution. Technically, it ensures that key gestures are rarely missed; 

furthermore, stable low-confidence thresholds can reduce false triggers. In terms of user 
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experience, it can bring a smoother real-time translation experience, reducing translation 
interruptions caused by detection failures (see Table 3). 

Table 3. Comparative experiments of various model versions. 

Model Version mAP@0.5 Precision Recall mAP@0.5:0.95 

YOLOv9 Baseline 92.7% 97.8% 96.9% 75.7% 

+RFCBAMConv 94.1% 98.0% 97.2% 86.2% 

+GPFM 97.6% 98.1% 97.4% 80.6% 

Full Model 98.5% 98.2% 97.6% 90.3% 

The loss function of the target detection model YOLOv9 consists of three parts: 
Localization Loss, Confidence Loss, and Classification Loss. Their expressions are as 

follows: 
Localization Loss: 

𝐿𝑙𝑜𝑐 = ∑ 1{𝑜𝑏𝑗𝑖}((𝑥𝑖 − 𝑥𝑖)
2 + (𝑦𝑖 − 𝑦̂𝑖)

2 + (𝑤𝑖 − 𝑤̂𝑖)
2 + (ℎ𝑖 − ℎ̂𝑖)

2)𝑁
𝑖=1   (0.1) 

Confidence Loss: 

𝐿𝑐𝑜𝑛𝑓 = ∑ 1{𝑜𝑏𝑗𝑖}(𝐶̂𝑖 − 𝐶𝑖)
2
+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ 1{𝑛𝑜𝑜𝑏𝑗𝑖}(1 − 𝐶̂𝑖)

2𝑁
𝑖=1

𝑁
𝑖=1    (0.2) 

Classification Loss: 

𝐿𝑐𝑙𝑠 = ∑ 1{𝑜𝑏𝑗𝑖}
𝑁
𝑖=1 ∑ (𝑝𝑐,𝑖 𝑙𝑜𝑔( 𝑝̂𝑐,𝑖))

𝐶
𝑐=1        (0.3) 

Gesture Recognition Model: Adopts the acoustic model CNN+CTC (Connectionist 
Temporal Classification) to recognize each frame in the sign language video. The 

Convolutional Neural Network (CNN) is used to extract gesture features, and CTC is used 
to avoid the need for forced alignment of gesture sequences. 

In the process of system acceleration, the Speed-up Ratio (S) is defined to measure 

the performance improvement of hardware acceleration, with the formula as follows: 

𝑆 =
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑
           (0.4) 

Hardware acceleration can ensure the real-time performance of gesture recognition 

and translation. Model optimization is used to reduce computational overhead and 
improve system response speed. Caching and latency optimization can reduce 

unnecessary computational delays during the recognition process, ensuring smooth real-
time feedback. 

6. Conclusion 

This study addresses core challenges in sign language translation systems, such as 

insufficient environmental robustness, real-time bottlenecks, and lack of multimodal 
synergy, proposing a sign language translation system based on an improved YOLOv9 

and Transformer-NAR architecture. By introducing the RFCBAMConv module to 
enhance gesture detail perception capability, designing the GPFM feature fusion module 
to optimize adaptability in complex scenes, and combining with a non-autoregressive 

translation model to achieve single-step parallel decoding. 
The system solves problems such as missed gesture detection under dynamic 

lighting, high latency in autoregressive translation, and multimodal semantic 
fragmentation, providing a low-latency, high-precision cross-modal communication tool 
for the deaf-mute population. Future work will focus on transfer learning for sign 

language dialects, enhancement of neuro-symbolic reasoning, and optimization of cross-
lingual generalization capabilities, further promoting the inclusive implementation of 

barrier-free technology in scenarios such as education and healthcare. 
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