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Abstract: Rapid non-destructive detection of crop nutrition serves as a crucial basis for water-

fertilizer management and environmental regulation. This paper proposes a rapid nitrogen 

detection method for lettuce based on hyperspectral imaging technology. Hyperspectral image data 

of lettuce samples were acquired, processed using the SG smoothing algorithm, and analyzed with 

the RF algorithm to extract nitrogen-specific wavelengths. Finally, a KELM model under the RBF-

Kernel function was established to predict lettuce nitrogen content. Results demonstrate that the 

KELM prediction model based on RF feature extraction achieves excellent performance, with an R² 

value exceeding 0.95 and RMSE below 0.27. This method provides scientific support for water and 

fertilizer irrigation decisions based on crop nitrogen requirements. 
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1. Introduction 

Lettuce, as one of the most important protected leafy vegetable, possesses high 
nutritional value and strong market demand. Nitrogen is a core nutrient for the growth 

and development of lettuce and plays a decisive role in photosynthesis, chlorophyll 
synthesis, and amino acid metabolism. Appropriate nitrogen supply can increase lettuce 

yield by 20-40%, whereas nitrogen deficiency leads to leaf yellowing and a sharp decline 
in biomass; excessive nitrogen, on the other hand, causes nitrate accumulation (with the 
EU standard limit being 2500-4500 mg/kg), posing a threat to food safety [1]. To address 

the need for green, efficient, and intelligent management in protected agriculture, 
breakthroughs in rapid and non-destructive nitrogen detection technology have become 

a critical technical bottleneck for efficient water and fertilizer management, as well as 
ensuring yield and quality [2,3]. 

Traditional manual judgment methods require years of accumulated experience and 

are highly subjective, resulting in relatively high error rates [4]. Chemical analysis 
methods can detect nitrogen content more accurately, but they are time-consuming and 

require destructive sampling [5]. In the field of crop nutrient detection, hyperspectral 
imaging (HSI) technology can perceive differences in the internal composition and 
nutrient macromolecule spectra of crops. Due to its rapid, non-destructive, and multi-

parameter synchronous analysis capabilities, it has become a forefront approach in crop 
nutrient monitoring [6,7]. By capturing spectral-spatial information in the 900-2500 nm 

range, it is possible to quantify the relationship between leaf biochemical components and 
optical properties. Compared to traditional methods, its advantages lie in achieving 
spectral integration [8], efficient acquisition of multidimensional features [9], and spatial 
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visualization of nitrogen [10]. It overcomes the limitations of traditional spectrometer 
point-source sampling, the lack of nutrient response in RGB imaging, and the 
insufficiency of spectral information in 3D imaging [11,12]. 

Nitrogenous compounds in lettuce leaves, such as proteins, chlorophyll and lutein, 
exhibit characteristic absorption peaks at specific wavelengths of 760 nm, 850 nm, 1040 

nm separately. By establishing machine learning models (such as PLSR and CNN) that 
correlate hyperspectral images of these characteristic spectral bands with nitrogen 
concentration, quantitative prediction of crop nitrogen nutrition can be achieved [13]. 

Based on this, this study proposes a rapid lettuce nitrogen detection method based on 
hyperspectral imaging. By integrating a nitrogen feature band selection algorithm with 

deep learning models, the method enables rapid and accurate analysis of lettuce nitrogen 
content and the generation of spatial distribution maps of nitrogen nutrition. This 
technology overcomes the limitations of traditional methods, which are often subjective 

and time-consuming, and provides a scientific basis for efficient, intelligent water and 
fertilizer management in controlled environment agriculture, promoting the green, 

efficient, and intelligent development of facility agriculture [14]. 

2. Materials and methods 

2.1. Experimental samples cultivation 

The experimental sample is Italian year-round bolting lettuce potted and cultivated 
for 40 days in the Venlo type multi span greenhouse in the Key Laboratory of modern 

agricultural equipment and technology of Jiangsu University, Ministry of Education 
(Figure 1). The nutrient solution was selected from the improved Yamasaki formula [15] 
and configured according to different nutrient gradients (20%, 60%, 100% and 150%). 100 

lettuce nitrogen samples were divided into four groups, 25 plants in each group. The 100% 
nitrogen group was used as the standard nutrient solution control group. In the 

experiment, from the lettuce samples with obvious differences between the growth of 
lettuce with different nutritional gradients, two pieces of lettuce leaves with good shape 
and intact leaves were selected from each sample. Each group of lettuce samples selected 

50 pieces of lettuce leaves to be sealed and preserved, and the hyperspectral information 
was collected quickly. Four groups of samples were sampled in turn and then detected 

quickly to maintain the living characteristics. 

 

Figure 1. Lettuce cultivation site. 

2.2. Hyperspectral Imaging System 

The experiment was conducted using the HSI-NIR push-broom hyperspectral 

imaging system developed by Shanghai Wuling Optoelectronics Technology Co., Ltd. 
(Figure 2), and the collected hyperspectral data were analyzed using the accompanying 
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analysis software (Figure 3). The system has a wavelength range of 871.607-1766.322 nm, 
with a resolution of 3.5 nm. 

 

Figure 2. Experimental Platform. 1- Collection Box; 2- Fill Light; 3- Control Box; 4- Computer; 5- 
Near-Infrared Camera;.6- Spectrometer; 7- Lens; 8- Light Guide; 9- Sample Stage; 10- Sample 

 

Figure 3. Hyperspectral Data Processing. 

2.3. Determination of Leaf Nitrogen Content 

In this experiment, the Kjeldahl method was employed to determine the reference 

nitrogen content of lettuce leaves. The measured nitrogen values were used as standard 
data to compare with hyperspectral measurement results, thereby enabling an objective 
evaluation of the accuracy and reliability of the hyperspectral quantitative analysis model. 

This comparative approach provides a solid basis for assessing the effectiveness of 
hyperspectral techniques in nitrogen content estimation. 

After hyperspectral data acquisition, lettuce leaf samples that remained fresh were 
collected for chemical analysis. First, the samples were subjected to freeze-drying 
treatment to remove moisture while preserving the original chemical composition of the 

leaves. This step helps to minimize the influence of water content on subsequent nitrogen 
determination and ensures the stability of the sample material. 

After drying, the samples were ground into fine powder using a ball mill. The 
homogenization of sample particles improves the consistency of chemical reactions 
during digestion and enhances the reproducibility of nitrogen measurements. 

Subsequently, the powdered samples were transferred to a digestion furnace, where they 
were prepared into test solutions through a digestion process. This procedure ensures that 

nitrogen-containing compounds in the samples are fully decomposed and converted into 
detectable forms. 
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Finally, the nitrogen content of each sample was determined using the Kjeldahl 
method in combination with a flow analyzer. Through this process, the nitrogen content 
percentage of each lettuce leaf sample was accurately obtained. As shown in Table 1, the 

measured nitrogen content values provide reliable reference data for model calibration 
and validation. These results serve as an essential benchmark for evaluating the predictive 

performance of hyperspectral models developed in this study. 

Table 1. Actual Nitrogen Content. 

Sample 

gradient 
Minimum(%) Maximum(%) Average(%) Median(%) 

Standard 

deviation(%) 

20 % 1.2046 2.2759 1.7357 1.7382 0.3556 

60 % 2.0475 3.2587 2.6423 2.6021 0.3971 

100 % 2.8908 4.2683 3.6264 3.5894 0.4039 

150 % 3.8489 5.1172 4.5558 4.5113 0.4047 

3. Results and Analysis 

3.1. Data Preprocessing 

The raw data of samples collected by the hyperspectral imaging system are shown in 
Figure 4. 

 

Figure 4. Raw Data and Data Range Selection Schematic Diagram. 

In order to eliminate the influence of edge noise, the effective spectral range was 
truncated to 1000 - 1600 nm, and 180 characteristic wavelength points were evenly 

extracted in this range. 
After determining the spectral range, the experiment needs to implement savitzky 

Golay (SG) smoothing pretreatment on the original data. Through parameter optimization 
verification, it is determined that the optimal window width is 7 points (polynomial order 
is fixed to 2), and the performance of the model is optimal: the determination coefficient 

R² is 0.9889, and the root mean square error RMSE is reduced to 4.4987 × 10-9 (significantly 
lower than other parameter combinations). The same batch of sample data were further 

corrected by MSC. 
Figure 5 shows the comparison of the data before and after preprocessing. Based on 

the preprocessing results, SPXY algorithm is used to divide the data set, and the goodness 

of fit index is R²=0.9107, RMSE=0.1351. 
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Figure 5. Comparison of data before and after pretreatment. 

3.2. Characteristic Wavelength Selection 

If the preprocessed spectral data is directly used for full-spectrum modeling, the high 
dimensionality and strong correlation among adjacent bands may easily lead to 
overfitting, which in turn reduces the generalization performance of the model. In 

hyperspectral analysis, redundant spectral information not only increases computational 
burden but also interferes with the effective extraction of key information related to target 

variables. Therefore, it is necessary to reduce the data dimension through characteristic 
wavelength selection in order to improve model stability and prediction reliability. 

In this study, the Random Frog (RF) algorithm was applied to screen key wavelength 

variables from hyperspectral data. This method evaluates the contribution of each spectral 
variable through repeated random sampling and probability statistics, enabling the 

identification of wavelengths that are most closely related to nitrogen content. By selecting 
representative wavelength variables, the accuracy and robustness of the quantitative 
model can be effectively improved. 

As shown in Figure 6, the RF algorithm was implemented to analyze the importance 
distribution of spectral variables. Based on the RF algorithm, 180 spectral variables within 

the wavelength range of 1000–1600 nm were initially extracted for analysis. This spectral 
interval contains abundant information related to nitrogen content and is suitable for 
subsequent feature screening. 

 

Figure 6. The results of RF operation. 
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To reduce the influence of random interference and ensure the stability of variable 
selection results, the RF algorithm was executed for 1000 iterations. During this process, 
the importance probability of each spectral variable was calculated. A higher selection 

probability indicates a greater contribution of the corresponding wavelength to nitrogen 
content estimation. By statistically analyzing the selection frequency of each variable, the 

relative importance of spectral bands was quantitatively evaluated. 
A significance threshold of 0.2 was set to further refine the selection results. Variables 

with importance probabilities exceeding this threshold were retained as characteristic 

wavelengths. Finally, six key wavelength variables were selected, as summarized in Table 
2. This result demonstrates that the RF algorithm can effectively reduce spectral 

dimensionality while preserving critical information. The distribution of the selected 
characteristic wavelengths along the spectral curve is illustrated in Figure 6, which shows 
that the retained wavelengths are mainly concentrated in regions with strong spectral 

response characteristics. 

Table 2. Feature extraction results. 

Algorithm 
Number of 

variables 
Number Characteristic wavelength (nm) 

RF 6 10,24,28,30,35,161 
1035.136,1086.922,1101.293,1108.413,1126.031,15

33.281 

Overall, the characteristic wavelength selection process based on the RF algorithm 
provides a reliable foundation for subsequent quantitative modeling. By reducing 
redundant spectral information and highlighting key wavelength features, the 

constructed model can achieve improved prediction accuracy and enhanced 
generalization performance. 

4. Discussion 

In this study, the Random Frog (RF) algorithm was employed to optimize the feature 

variables of hyperspectral images, and a spectral quantitative analysis model for nitrogen 
content in lettuce was subsequently established. The purpose of applying feature 

optimization was to reduce spectral redundancy and enhance the relevance between input 
variables and nitrogen content. On this basis, the Kernel Extreme Learning Machine 
(KELM) was selected as the modeling algorithm. Due to its ability to efficiently handle 

nonlinear relationships and high-dimensional data, this model demonstrates clear 
advantages in hyperspectral quantitative analysis. 

The Extreme Learning Machine (ELM) generates the input layer weights and hidden 
layer biases randomly during the initialization phase and keeps them fixed throughout 
the entire training process. This mechanism effectively avoids the time-consuming 

iterative parameter adjustment required by traditional gradient-based learning 
algorithms, thereby significantly improving training efficiency. As a result, ELM is 

particularly suitable for applications involving large-scale spectral data and repeated 
modeling processes. 

In the stage of solving the output weights, ELM does not rely on iterative 

optimization strategies. Instead, it directly computes the minimum-norm least-squares 
solution based on the Moore–Penrose generalized inverse theory. This analytical solution 

simplifies the training procedure and reduces computational complexity. More 
importantly, this approach ensures that the model reaches a unique optimal solution 
under the given conditions, effectively suppressing the risk of overfitting and enhancing 

the generalization capability of the model when applied to unknown samples. 
On the basis of ELM, the Kernel Extreme Learning Machine (KELM) introduces a 

kernel-based nonlinear mapping mechanism. By predefining a kernel function and its 
corresponding parameters, the original input space is implicitly mapped into a high-

dimensional feature space. In this space, complex nonlinear relationships between 

https://soapubs.com/index.php/ICSS


AI Digital Technol., Vol. 2 No. 1(2025)  
 

 
AI Digital Technol., Vol. 2 No. 1(2025) 184 https://soapubs.com/index.php/AIDT 

spectral variables and nitrogen content can be more effectively captured. By predefining 
a kernel function, such as the radial basis function (RBF) or Sigmoid function, the hidden 
layer output matrix is uniquely determined by the kernel function, eliminating the need 

to explicitly construct hidden layer nodes. 
This improvement greatly reduces model complexity. The training process of KELM 

only requires a single-step solution of the output layer weights, while retaining the global 
optimization characteristics inherited from ELM. Consequently, KELM achieves a balance 
between computational efficiency and enhanced generalization performance, making it 

well suited for hyperspectral quantitative modeling tasks. 
In this study, the KELM model adopts the RBF kernel function. The regularization 

coefficient C was set to 100, and the kernel parameter S was set to 10. These parameter 
settings aim to achieve an appropriate balance between fitting accuracy and model 
stability. The detailed modeling performance results are presented in Table 3. As shown 

in Table 3, when the KELM model is constructed using spectral variables selected by the 
Random Frog (RF) algorithm, the coefficient of determination exceeds 0.95. This result 

indicates a strong consistency between the predicted nitrogen content values and the 
reference measurements. The modeling results demonstrate that the proposed RF–KELM 
approach is reasonable and effective for nitrogen content estimation based on 

hyperspectral data. 

Table 3. KELM modeling. 

Characteristic 

Selection 

Method 

Number of 

variables 
RC2 RMSEC RP2 RMSEP 

RF 6 0.9534 0.2427 0.9541 0.2631 

5. Conclusion 

This paper proposes a method for rapid detection of crop nutrition based on 

hyperspectral imaging. Data preprocessing and analysis were conducted using various 
algorithms such as SG smoothing, SNV, and SPXY, followed by the extraction and 

optimization of nitrogen characteristic wavelengths using the RF algorithm. On this basis, 
KELM models with RBF-Kernel functions were established to achieve rapid evaluation of 
nitrogen nutrition in lettuce. The results indicate that the nitrogen detection model 

established using the Random Frog (RF) algorithm performed excellently, with a 
coefficient of determination R² > 0.95 and RMSE less than 0.27, achieving high-precision 

and rapid analysis of nitrogen nutrition. Based on hyperspectral characteristic images of 
lettuce nitrogen, the spatial distribution of nitrogen content in lettuce was visualized by 
setting the threshold of nitrogen content feature spectra, providing an intuitive reference 

for evaluating lettuce nutritional levels and water-fertilizer supply requirements. 
Therefore, the results of this paper have strong guiding significance and reference 

value for the rapid detection of crop nutrition and the decision-making of water-fertilizer 
irrigation based on crop demand. 
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