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Abstract: Rapid non-destructive detection of crop nutrition serves as a crucial basis for water-
fertilizer management and environmental regulation. This paper proposes a rapid nitrogen
detection method for lettuce based on hyperspectral imaging technology. Hyperspectral image data
of lettuce samples were acquired, processed using the SG smoothing algorithm, and analyzed with
the RF algorithm to extract nitrogen-specific wavelengths. Finally, a KELM model under the RBF-
Kernel function was established to predict lettuce nitrogen content. Results demonstrate that the
KELM prediction model based on RF feature extraction achieves excellent performance, with an R?
value exceeding 0.95 and RMSE below 0.27. This method provides scientific support for water and
fertilizer irrigation decisions based on crop nitrogen requirements.
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1. Introduction

Lettuce, as one of the most important protected leafy vegetable, possesses high
nutritional value and strong market demand. Nitrogen is a core nutrient for the growth
and development of lettuce and plays a decisive role in photosynthesis, chlorophyll
synthesis, and amino acid metabolism. Appropriate nitrogen supply can increase lettuce
yield by 20-40%, whereas nitrogen deficiency leads to leaf yellowing and a sharp decline
in biomass; excessive nitrogen, on the other hand, causes nitrate accumulation (with the
EU standard limit being 2500-4500 mg/kg), posing a threat to food safety [1]. To address
the need for green, efficient, and intelligent management in protected agriculture,
N breakthroughs in rapid and non-destructive nitrogen detection technology have become
a critical technical bottleneck for efficient water and fertilizer management, as well as
ensuring yield and quality [2,3].

Traditional manual judgment methods require years of accumulated experience and
Atrbution  (CC BY) license  are highly subjective, resulting in relatively high error rates [4]. Chemical analysis
(httpsi//creativecommons.org/license  Methods can detect nitrogen content more accurately, but they are time-consuming and
s/by/4.0)). require destructive sampling [5]. In the field of crop nutrient detection, hyperspectral

imaging (HSI) technology can perceive differences in the internal composition and
nutrient macromolecule spectra of crops. Due to its rapid, non-destructive, and multi-
parameter synchronous analysis capabilities, it has become a forefront approach in crop
nutrient monitoring [6,7]. By capturing spectral-spatial information in the 900-2500 nm
range, it is possible to quantify the relationship between leaf biochemical components and
optical properties. Compared to traditional methods, its advantages lie in achieving
spectral integration [8], efficient acquisition of multidimensional features [9], and spatial
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visualization of nitrogen [10]. It overcomes the limitations of traditional spectrometer
point-source sampling, the lack of nutrient response in RGB imaging, and the
insufficiency of spectral information in 3D imaging [11,12].

Nitrogenous compounds in lettuce leaves, such as proteins, chlorophyll and lutein,
exhibit characteristic absorption peaks at specific wavelengths of 760 nm, 850 nm, 1040
nm separately. By establishing machine learning models (such as PLSR and CNN) that
correlate hyperspectral images of these characteristic spectral bands with nitrogen
concentration, quantitative prediction of crop nitrogen nutrition can be achieved [13].
Based on this, this study proposes a rapid lettuce nitrogen detection method based on
hyperspectral imaging. By integrating a nitrogen feature band selection algorithm with
deep learning models, the method enables rapid and accurate analysis of lettuce nitrogen
content and the generation of spatial distribution maps of nitrogen nutrition. This
technology overcomes the limitations of traditional methods, which are often subjective
and time-consuming, and provides a scientific basis for efficient, intelligent water and
fertilizer management in controlled environment agriculture, promoting the green,
efficient, and intelligent development of facility agriculture [14].

2. Materials and methods
2.1. Experimental samples cultivation

The experimental sample is Italian year-round bolting lettuce potted and cultivated
for 40 days in the Venlo type multi span greenhouse in the Key Laboratory of modern
agricultural equipment and technology of Jiangsu University, Ministry of Education
(Figure 1). The nutrient solution was selected from the improved Yamasaki formula [15]
and configured according to different nutrient gradients (20%, 60%, 100% and 150%). 100
lettuce nitrogen samples were divided into four groups, 25 plants in each group. The 100%
nitrogen group was used as the standard nutrient solution control group. In the
experiment, from the lettuce samples with obvious differences between the growth of
lettuce with different nutritional gradients, two pieces of lettuce leaves with good shape
and intact leaves were selected from each sample. Each group of lettuce samples selected
50 pieces of lettuce leaves to be sealed and preserved, and the hyperspectral information
was collected quickly. Four groups of samples were sampled in turn and then detected
quickly to maintain the living characteristics.
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Figure 1. Lettuce cultivation site.

2.2. Hyperspectral Imaging System

The experiment was conducted using the HSI-NIR push-broom hyperspectral
imaging system developed by Shanghai Wuling Optoelectronics Technology Co., Ltd.
(Figure 2), and the collected hyperspectral data were analyzed using the accompanying
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analysis software (Figure 3). The system has a wavelength range of 871.607-1766.322 nm,
with a resolution of 3.5 nm.
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Figure 2. Experimental Platform. 1- Collection Box; 2- Fill Light; 3- Control Box; 4- Computer; 5-
Near-Infrared Camera;.6- Spectrometer; 7- Lens; 8- Light Guide; 9- Sample Stage; 10- Sample
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Figure 3. Hyperspectral Data Processing.

2.3. Determination of Leaf Nitrogen Content

In this experiment, the Kjeldahl method was employed to determine the reference
nitrogen content of lettuce leaves. The measured nitrogen values were used as standard
data to compare with hyperspectral measurement results, thereby enabling an objective
evaluation of the accuracy and reliability of the hyperspectral quantitative analysis model.
This comparative approach provides a solid basis for assessing the effectiveness of
hyperspectral techniques in nitrogen content estimation.

After hyperspectral data acquisition, lettuce leaf samples that remained fresh were
collected for chemical analysis. First, the samples were subjected to freeze-drying
treatment to remove moisture while preserving the original chemical composition of the
leaves. This step helps to minimize the influence of water content on subsequent nitrogen
determination and ensures the stability of the sample material.

After drying, the samples were ground into fine powder using a ball mill. The
homogenization of sample particles improves the consistency of chemical reactions
during digestion and enhances the reproducibility of nitrogen measurements.
Subsequently, the powdered samples were transferred to a digestion furnace, where they
were prepared into test solutions through a digestion process. This procedure ensures that
nitrogen-containing compounds in the samples are fully decomposed and converted into
detectable forms.
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Finally, the nitrogen content of each sample was determined using the Kjeldahl
method in combination with a flow analyzer. Through this process, the nitrogen content
percentage of each lettuce leaf sample was accurately obtained. As shown in Table 1, the
measured nitrogen content values provide reliable reference data for model calibration
and validation. These results serve as an essential benchmark for evaluating the predictive
performance of hyperspectral models developed in this study.

Table 1. Actual Nitrogen Content.

Sample ) imum(®%) Maximum(%) Average(®%) Median(%)  >tandard
gradient deviation(%)
20 % 1.2046 2.2759 1.7357 1.7382 0.3556
60 % 2.0475 3.2587 2.6423 2.6021 0.3971
100 % 2.8908 4.2683 3.6264 3.5894 0.4039
150 % 3.8489 5.1172 45558 45113 0.4047

3. Results and Analysis
3.1. Data Preprocessing

The raw data of samples collected by the hyperspectral imaging system are shown in
Figure 4.
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Figure 4. Raw Data and Data Range Selection Schematic Diagram.

In order to eliminate the influence of edge noise, the effective spectral range was
truncated to 1000 - 1600 nm, and 180 characteristic wavelength points were evenly
extracted in this range.

After determining the spectral range, the experiment needs to implement savitzky
Golay (SG) smoothing pretreatment on the original data. Through parameter optimization
verification, it is determined that the optimal window width is 7 points (polynomial order
is fixed to 2), and the performance of the model is optimal: the determination coefficient
R?is 0.9889, and the root mean square error RMSE is reduced to 4.4987 x 10-9 (significantly
lower than other parameter combinations). The same batch of sample data were further
corrected by MSC.

Figure 5 shows the comparison of the data before and after preprocessing. Based on
the preprocessing results, SPXY algorithm is used to divide the data set, and the goodness
of fit index is R?=0.9107, RMSE=0.1351.

Al Digital Technol., Vol. 2 No. 1(2025)

181 https://soapubs.com/index.php/AIDT


https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 2 No. 1(2025)

4000
3000
g
= 2000
>
1000
0 A - 1 i -l J
1000 1100 1200 1300 1400 1500 1600
Wavelength (nm)
(0]
2
£ J
3

1000 1100 1200 1300 1400 1500 1600

Wavelength (nm)
Figure 5. Comparison of data before and after pretreatment.

3.2. Characteristic Wavelength Selection

If the preprocessed spectral data is directly used for full-spectrum modeling, the high
dimensionality and strong correlation among adjacent bands may easily lead to
overfitting, which in turn reduces the generalization performance of the model. In
hyperspectral analysis, redundant spectral information not only increases computational
burden but also interferes with the effective extraction of key information related to target
variables. Therefore, it is necessary to reduce the data dimension through characteristic
wavelength selection in order to improve model stability and prediction reliability.

In this study, the Random Frog (RF) algorithm was applied to screen key wavelength
variables from hyperspectral data. This method evaluates the contribution of each spectral
variable through repeated random sampling and probability statistics, enabling the
identification of wavelengths that are most closely related to nitrogen content. By selecting
representative wavelength variables, the accuracy and robustness of the quantitative
model can be effectively improved.

As shown in Figure 6, the RF algorithm was implemented to analyze the importance
distribution of spectral variables. Based on the RF algorithm, 180 spectral variables within
the wavelength range of 1000-1600 nm were initially extracted for analysis. This spectral
interval contains abundant information related to nitrogen content and is suitable for
subsequent feature screening,.
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Figure 6. The results of RF operation.
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To reduce the influence of random interference and ensure the stability of variable
selection results, the RF algorithm was executed for 1000 iterations. During this process,
the importance probability of each spectral variable was calculated. A higher selection
probability indicates a greater contribution of the corresponding wavelength to nitrogen
content estimation. By statistically analyzing the selection frequency of each variable, the
relative importance of spectral bands was quantitatively evaluated.

A significance threshold of 0.2 was set to further refine the selection results. Variables
with importance probabilities exceeding this threshold were retained as characteristic
wavelengths. Finally, six key wavelength variables were selected, as summarized in Table
2. This result demonstrates that the RF algorithm can effectively reduce spectral
dimensionality while preserving critical information. The distribution of the selected
characteristic wavelengths along the spectral curve is illustrated in Figure 6, which shows
that the retained wavelengths are mainly concentrated in regions with strong spectral
response characteristics.

Table 2. Feature extraction results.

Number of
Algorithm un.1 ero Number Characteristic wavelength (nm)
variables
RE 6 10,24,28,30,35, 161 1035.136,1086.922,1101.293,1108.413,1126.031,15

33.281

Overall, the characteristic wavelength selection process based on the RF algorithm
provides a reliable foundation for subsequent quantitative modeling. By reducing
redundant spectral information and highlighting key wavelength features, the
constructed model can achieve improved prediction accuracy and enhanced
generalization performance.

4. Discussion

In this study, the Random Frog (RF) algorithm was employed to optimize the feature
variables of hyperspectral images, and a spectral quantitative analysis model for nitrogen
content in lettuce was subsequently established. The purpose of applying feature
optimization was to reduce spectral redundancy and enhance the relevance between input
variables and nitrogen content. On this basis, the Kernel Extreme Learning Machine
(KELM) was selected as the modeling algorithm. Due to its ability to efficiently handle
nonlinear relationships and high-dimensional data, this model demonstrates clear
advantages in hyperspectral quantitative analysis.

The Extreme Learning Machine (ELM) generates the input layer weights and hidden
layer biases randomly during the initialization phase and keeps them fixed throughout
the entire training process. This mechanism effectively avoids the time-consuming
iterative parameter adjustment required by traditional gradient-based learning
algorithms, thereby significantly improving training efficiency. As a result, ELM is
particularly suitable for applications involving large-scale spectral data and repeated
modeling processes.

In the stage of solving the output weights, ELM does not rely on iterative
optimization strategies. Instead, it directly computes the minimum-norm least-squares
solution based on the Moore—Penrose generalized inverse theory. This analytical solution
simplifies the training procedure and reduces computational complexity. More
importantly, this approach ensures that the model reaches a unique optimal solution
under the given conditions, effectively suppressing the risk of overfitting and enhancing
the generalization capability of the model when applied to unknown samples.

On the basis of ELM, the Kernel Extreme Learning Machine (KELM) introduces a
kernel-based nonlinear mapping mechanism. By predefining a kernel function and its
corresponding parameters, the original input space is implicitly mapped into a high-
dimensional feature space. In this space, complex nonlinear relationships between
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References

spectral variables and nitrogen content can be more effectively captured. By predefining
a kernel function, such as the radial basis function (RBF) or Sigmoid function, the hidden
layer output matrix is uniquely determined by the kernel function, eliminating the need
to explicitly construct hidden layer nodes.

This improvement greatly reduces model complexity. The training process of KELM
only requires a single-step solution of the output layer weights, while retaining the global
optimization characteristics inherited from ELM. Consequently, KELM achieves a balance
between computational efficiency and enhanced generalization performance, making it
well suited for hyperspectral quantitative modeling tasks.

In this study, the KELM model adopts the RBF kernel function. The regularization
coefficient C was set to 100, and the kernel parameter S was set to 10. These parameter
settings aim to achieve an appropriate balance between fitting accuracy and model
stability. The detailed modeling performance results are presented in Table 3. As shown
in Table 3, when the KELM model is constructed using spectral variables selected by the
Random Frog (RF) algorithm, the coefficient of determination exceeds 0.95. This result
indicates a strong consistency between the predicted nitrogen content values and the
reference measurements. The modeling results demonstrate that the proposed RF-KELM
approach is reasonable and effective for nitrogen content estimation based on
hyperspectral data.

Table 3. KELM modeling.

Characteristic

Selection | wmberof RC2 RMSEC RP2 RMSEP
variables
Method
RF 6 0.9534 0.2427 0.9541 0.2631

5. Conclusion

This paper proposes a method for rapid detection of crop nutrition based on
hyperspectral imaging. Data preprocessing and analysis were conducted using various
algorithms such as SG smoothing, SNV, and SPXY, followed by the extraction and
optimization of nitrogen characteristic wavelengths using the RF algorithm. On this basis,
KELM models with RBF-Kernel functions were established to achieve rapid evaluation of
nitrogen nutrition in lettuce. The results indicate that the nitrogen detection model
established using the Random Frog (RF) algorithm performed excellently, with a
coefficient of determination R? > 0.95 and RMSE less than 0.27, achieving high-precision
and rapid analysis of nitrogen nutrition. Based on hyperspectral characteristic images of
lettuce nitrogen, the spatial distribution of nitrogen content in lettuce was visualized by
setting the threshold of nitrogen content feature spectra, providing an intuitive reference
for evaluating lettuce nutritional levels and water-fertilizer supply requirements.

Therefore, the results of this paper have strong guiding significance and reference
value for the rapid detection of crop nutrition and the decision-making of water-fertilizer
irrigation based on crop demand.
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