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Abstract: Large language models (LLMs) have become a hot topic in AI, and since the GPT series 

they have achieved remarkable success across many domains. However, directly using a general-

purpose model often fails to meet the needs of specific applications, which motivates fine-tuning 

with domain-specific data. Nevertheless, parameter-efficient fine-tuning (PEFT) methods such as 

LoRA may perform poorly on certain algorithmic benchmarks, raising concerns about cat-astrophic 

forgetting. In this paper, we conduct extensive experiments to confirm this phenomenon and 

investigate O-LoRA as a mitigation strategy. Results show that O-LoRA can effectively alleviate 

catastrophic forgetting under continual instruction fine-tuning, but its effectiveness can be sensitive 

to hyperparameters on some datasets. Overall, O-LoRA provides a practical direction for mitigating 

catastrophic forgetting during continual fine-tuning of LLMs. 
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1. Introduction 

This work investigates catastrophic forgetting that may arise during continual 

instruction fine-tuning of large language models (LLMs), with a particular focus on 
parameter-efficient fine-tuning (PEFT) methods such as LoRA, and explores O-LoRA as a 

mitigation strategy. 

1.1. Background 

Since the Turing Test was proposed in the 1950s, researchers have explored how 
machines can acquire language intelligence. Language is a complex human expression 

system governed by grammatical rules, and developing AI algorithms that understand 
and master language remains a major challenge. As an important approach, language 
modeling has been widely used for language understanding and generation over the past 

two decades, evolving from statistical language models to neural language models. More 
recently, pretraining Transformer models on large-scale corpora has led to pretrained 

language models (PLMs), which show strong capability across a variety of natural 
language processing (NLP) tasks. As scaling has been found to increase model capacity, 

researchers further explored scaling laws by increasing parameter counts. Interestingly, 
once model size exceeds a certain threshold, these scaled-up language models not only 
improve performance significantly, but also exhibit abilities not seen in smaller models 

(e.g., BERT), such as in-context learning. To distinguish language models of different 
scales, the community introduced the term large language models (LLMs), referring to 

PLMs with very large scale (e.g., tens or hundreds of billions of parameters) trained on 
massive text data, such as GPT-3, PaLM, Galactica, and LLaMA [1-5]. Recently, both 
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academia and industry have accelerated research on LLMs; a prominent milestone is 
ChatGPT, a powerful AI chatbot built on LLMs, which has attracted broad attention. The 
rapid evolution of LLM technology is reshaping the AI field and may fundamentally 

change how we develop and use AI algorithms [6]. 

1.2. Current Status and Motivation 

Pretraining lays the foundation for models to learn linguistic capability. By 
pretraining on large corpora, LLMs obtain basic language understanding and generation 

abilities [2-3]. However, LLMs are often not well-suited to specific tasks unless they are 
fine-tuned. Full-parameter fine-tuning initializes from pretrained weights, updates all 

parameters, and produces a separate instance for each task [7]. As model size grows, 
updating all parameters and maintaining a separate instance per task becomes impractical. 
Parameter-efficient fine-tuning (PEFT) was therefore proposed to adapt LLMs to 

downstream tasks efficiently by training only a small subset of parameters-either a subset 
of existing parameters or a small set of newly added parameters [8]. Different PEFT 

methods vary in parameter efficiency, memory efficiency, training speed, final model 
quality, and inference overhead. In recent years, more than a hundred PEFT papers have 
been published, and surveys summarize popular approaches, including Adapters, BitFit, 

Prefix-Tuning, P-Tuning, Prompt-Tuning, and LoRA [9-15]. 
Despite their efficiency, fine-tuning may induce catastrophic forgetting-a 

phenomenon in machine learning where a model forgets previously learned knowledge 
while learning new information [16]. This can limit the generality and scalability of fine-

tuned models in real-world applications [17]. Recent studies suggest that even advanced 
PEFT methods like LoRA can exhibit this behavior under certain conditions [16]. Common 
mitigation strategies include: (1) experience replay and related methods that store 

examples from previous tasks and train jointly with the current task, which may raise 
privacy concerns especially for sensitive data; (2) regularization-based methods that add 

penalties to the loss to discourage changes to important weights, such as Orthogonal 
Gradient Descent (OGD), but OGD requires storing gradients of all historical data and is 
infeasible for LLMs; and (3) methods that dynamically expand model capacity or isolate 

existing weights to reduce interference, such as Progressive Prompts, although such 
methods may generalize poorly to unseen tasks [18-20]. 

These approaches often face two key limitations: they require storing historical data 
or gradients (costly for large models), and they typically update tasks within a shared 
vector space that directly affects hidden representations. Motivated by these issues, we 

focus on O-LoRA, which aims to overcome both limitations [21]. 
The main contributions of this paper are summarized as follows: 

1) We verify that PEFT methods such as LoRA can improve LLM performance on 
some tasks, but also suffer from catastrophic forgetting during continual fine-
tuning. 

2) We validate that O-LoRA can alleviate catastrophic forgetting when fine-tuning 
LLMs, while also observing that its effectiveness can be sensitive to 

hyperparameter choices. 

2. Related Work 

This section reviews several parameter-efficient fine-tuning techniques, including 
Prefix-Tuning, P-Tuning, and Prompt-Tuning. We also describe LoRA, which adapts 

models via low-rank decomposition and can significantly reduce trainable parameters 
and GPU memory requirements. 

2.1. Prefix-Tuning 

Prefix-Tuning is a PEFT method for LLMs that adjusts model behavior by 

prepending a continuous, learnable sequence of prefix vectors to the input, without 
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updating the full set of model parameters. The prefix is represented as continuous token 
embeddings whose influence propagates through all Transformer layers and affects 
subsequent tokens. 

Concretely, one or two prefixes (for encoder-decoder architectures) are inserted 
before the autoregressive LLM input to form a new input sequence z = [PREFIX;  x;  y] or 

[PREFIX; x; PREFIX′; y]. Here Pidx denotes the prefix index sequence and |Pidx | is the 
prefix length. Unlike discrete prompts drawn from a fixed vocabulary, Prefix-Tuning 

treats prefix activations as free parameters defined by a matrix Pθ (controlled by 

parameters θ) with dimension |Pidx |× dim(hi). The training objective remains unchanged, 

but the trainable parameter set changes: the original model parameters ϕ are frozen and 

only θ  is optimized. Each hidden state hi depends on the learnable prefix 

matrixPθregardless of whether its index lies in the prefix range. To improve optimization 

stability and performance, Prefix-Tuning uses re-parameterization: instead of directly 

updating Pθ , it maps a smaller matrix P
θ
′  through a large MLPθ  to obtain Pθ , and 

replaces Pθ[i, ∶] with P
θ
′[i, :]. After training, the re-parameterization parameters can be 

discarded and only the prefix Pθ is stored [12].  

2.2. P-Tuning 

P-Tuning aims to improve LLM performance on NLP tasks by inserting a set of 

continuous, learnable vectors as "virtual tokens" into the input sequence, replacing 
embeddings that would otherwise correspond to discrete prompt tokens. The continuous 

virtual tokens do not belong to the original vocabulary; rather, they are optimized as a set 
of continuous parameters. A template organizes context, targets, and virtual tokens into a 
structured input format. 

During optimization, P-Tuning faces two main challenges: (1) discreteness, since 
pretrained token embeddings are highly discrete, and (2) dependency among prompt 

embeddings, since prompt tokens should exhibit correlations rather than evolve 
independently. To address these issues, P-Tuning uses lightweight neural architectures 
such as bidirectional LSTMs to encode the continuous prompts, helping them better 

capture context information and avoid poor local optima [13]. 

2.3. Prompt-Tuning 

Prompt-Tuning is another PEFT approach that learns a set of continuous, optimizable 

"soft prompts" while keeping the pretrained model frozen [22,23]. Unlike discrete text 
prompts used in models such as GPT-3, soft prompts are updated end-to-end via 
backpropagation, and can integrate signals from any number of labeled examples. On 

large models such as the T5 family, as the number of parameters grows, the performance 
gap between Prompt-Tuning and full fine-tuning narrows and can become comparable 

[24]. This makes it possible for a single frozen model to serve multiple downstream tasks, 
substantially reducing storage and deployment cost. 

In implementation, Prompt-Tuning reformulates tasks as text generation and 

prepends a trainable continuous prompt vector to the input. In T5, the soft prompt is 
represented as a matrix that is concatenated with the original input embedding matrix as 

the encoder-decoder input. During training, only the prompt parameters are updated to 
maximize the likelihood of the output sequence, while the main model parameters remain 
fixed. Prompt-Tuning can be viewed as a simplified variant of Prefix-Tuning [14]. 

2.4. LoRA 

LoRA (Low-Rank Adaptation) addresses the high storage cost, low computational 
efficiency, and deployment challenges of adapting large pretrained language models to 
specific tasks or domains. LoRA keeps the pretrained weights fixed and injects trainable 

low-rank matrices A and B into each Transformer layer. 
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Specifically, given a pretrained weight matrix W , LoRA introduces a low-rank 
update ΔW =  BA, where B ∈  R^{d × r}, A ∈  R^{r × k}, and r is much smaller than the 
rank of W  (i.e., d  and k). During fine-tuning, only A and B are optimized, greatly 

reducing the number of trainable parameters for downstream tasks and lowering GPU 
memory usage. Compared with GPT-3 fine-tuned with Adam, LoRA can reduce trainable 

parameters by up to 10,000× and cut GPU memory requirements by about 3× [15,25]. 

3. O-LoRA Method 

To address catastrophic forgetting, this paper introduces O-LoRA. While keeping 
pretrained weights fixed, O-LoRA uses a low-rank parameter update mechanism under 

an orthogonality constraint to limit interference across tasks during learning, thereby 
reducing catastrophic forgetting. 

O-LoRA (Orthogonal Low-Rank Adaptation) is a simple and efficient PEFT method 

proposed for continual learning with LLMs. In continual learning, a model learns a 
sequence of tasks, and knowledge from earlier tasks may be overwritten by later tasks. O-

LoRA leverages the intrinsic low-rank property of weight updates during fine-tuning and 
constrains different tasks to be learned in mutually orthogonal low-rank subspaces. 

Concretely, for each new task O-LoRA uses new low-rank matrices A and B to form 

W int +  ΔW =  W int  + A B . The task-specific update computed from A and B is 
constrained to be orthogonal to the gradient subspace of previous tasks, which reduces 

interference and mitigates forgetting. Experiments show that O-LoRA outperforms prior 
state-of-the-art methods on standard continual learning benchmarks, maintains strong 

average performance even across many tasks, and better preserves the generalization 
ability of LLMs to unseen tasks. Importantly, it avoids privacy risks by not requiring 
storage of user data for replay, and does not rely on task identifiers at test time, making it 

well-aligned with the instruction-tuning setting [21]. 

4. Experimental Design and Results 

4.1. Performance of LoRA and Other PEFT Methods 

We conduct instruction fine-tuning on the LLaMA-2-7B model using the Alpaca 
dataset, and evaluate the resulting models on TruthfulQA, BLiMP Causative, MMLU 

GlobalFacts, as well as arithmetic tasks. We compare LoRA under different 
hyperparameter settings with other PEFT methods to analyze performance changes. 

Experimental setup: We fine-tune LLaMA-2-7B on Alpaca, which contains 52,000 
instruction instances with demonstrations generated by OpenAI text-davinci-003, and is 
commonly used to improve instruction-following ability. For evaluation, we use 

representative NLP benchmarks (TruthfulQA, BLiMP Causative, MMLU GlobalFacts) 
and two arithmetic subtraction tasks of different difficulty (two-digit and four-digit 

subtraction). We systematically sweep LoRA hyperparameters (rank r and scaling α) and 
record accuracy on each evaluation task for each configuration. 

From Table 1, we confirm that PEFT methods such as LoRA can improve model 

performance on some datasets. However, on arithmetic (algorithmic) datasets, we observe 
that under certain hyperparameter settings the accuracy of LoRA fine-tuned models drops 

substantially. Similar behavior appears for Prefix-Tuning, P-Tuning, and Prompt-Tuning, 
suggesting that these methods may encounter catastrophic forgetting or instability in 
continual learning scenarios. 
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Table 1. Performance of LoRA under different hyperparameter settings and other PEFT methods 
on multiple evaluation tasks. 

Method/Set

ting 

truthful 

qa_mcl 

truthful 

qa_mc2 

arithmetic 

_2ds 

arithmetic 

_4ds 

blimp_caus 

ativa 

global_f 

acts 

LLaMA-2-

7B 
0.2521 0.3897 0.5025 0.3635 0.7580 0.2400 

Finetune 0.2754 0.4058 0.5315 0.3720 0.7820 0.3700 

LoRA, r=64, 

α=1 
0.2521 0.3740 0.5245 0.3700 0.7680 0.3300 

LoRA, r=64, 

α=16 
0.2619 0.4068 0.8275 0.5070 0.7650 0.3700 

LoRA, r=64, 

α=32 
0.2619 0.3995 0.6600 0.4620 0.7730 0.3600 

LoRA, r=64, 

α=64 
0.2411 0.3695 0.6225 0.0880 0.7540 0.3200 

LoRA, r=64, 

α=128 
0.2448 0.4959 0.0000 0.0000 0.4200 0.1800 

LoRA,r=128,

α=1 
0.2546 0.3730 0.5310 0.3695 0.7760 0.3500 

LoRA,r=128,

α=16 
0.2931 0.4387 0.5255 0.3570 0.7710 0.3500 

LoRA,r=128,

α=32 
0.2644 0.4461 0.4100 0.1360 0.7310 0.3900 

LoRA,r=128,

α=64 
0.2166 0.3367 0.0000 0.0000 0.6700 0.2900 

LoRA,r=128,

α=128 
0.2436 0.4949 0.0000 0.0000 0.4280 0.1800 

LoRA,r=128,

α=256 
0.2424 0.5000 0.0000 0.0000 0.4530 0.1800 

LoRA,r=256,

α=256 
0.2387 0.5027 0.0000 0.0000 0.4490 0.1800 

Prefix-

Tuning 
0.2436 0.4858 0.0000 0.0000 0.3910 0.1800 

P-Tuning 0.2326 0.4845 0.0000 0.0000 0.4050 0.2300 

Prompt- 

Tuning 
0.2411 0.4867 0.0000 0.0000 0.3990 0.2100 

4.2. Verifying Catastrophic Forgetting and the Effect of O-LoRA 

To further analyze the phenomenon observed in Experiment 4.1-namely catastrophic 

forgetting during fine-tuning with PEFT methods such as LoRA-we follow the continual 
learning perspective and evaluation protocol described in "An Empirical Study of 
Catastrophic Forgetting in Large Language Models During Continual Fine-tuning" [26]. 

We design a sequence of instruction-tuning tasks to examine both learning ability and 
knowledge retention. 

We consider three core instruction-tuning tasks: 
1) Text simplification (Simp): simplifying complex text into an easier-to-

understand form. 

2) Explanation generation (Exp): generating natural language explanations for a 
given premise, hypothesis, or label to demonstrate deeper understanding and 

reasoning. 
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3) Inquisitive question generation (InqQG): generating questions from a long-form 
answer to test information extraction and reverse reasoning ability. 

For evaluation, we use three categories of general-purpose metrics and 

representative benchmark datasets, summarized in Table 2. 

Table 2. Evaluation sets and their elements used in this study. 

Set Elements 

Domain Knowledge (DK) MMLU: STEM; Social; Human; Other 

Reasoning (Rs) 
BoolQ; PIQA; Winogrande; HellaSwag; 

MathQA; Mutual 

Reading Comprehension (RC) RACE-high; RACE-middle 

Specifically: (1) Domain knowledge is evaluated using the multi-task language 
understanding benchmark MMLU, measuring knowledge storage and application across 

STEM, Human, Social, and Other categories; (2) Reasoning ability is tested with widely 
used commonsense reasoning datasets (HellaSwag, Winogrande, PIQA), along with 
MathQA for mathematical reasoning and Mutual for dialogue reasoning; (3) Reading 

comprehension is evaluated on RACE using both middle- and high-difficulty splits to 
reflect deep understanding and information extraction from complex texts. 

Let  E i(i =  1, 2, 3)  denote the above evaluation sets. Each set contains multiple 
datasets or splits (Table 2). For example, E i corresponds to MMLU and contains STEM, 
Human, Social, and Other. For each element e in E i, we denote the evaluation score after 

the m-th continual learning task as  Rm
e . Following, we use the average decrease in scores 

as a surrogate measure of forgetting, defined as the Forgetting Gradient (FGi ) [17]: 

FGi  =  
1

|Ei|
∑

1

Ne∈Ei
∑

R0
e − Rm

e

R0
e

n
m=1 ∗ 100%, where R0

e  is the score of the initial (pre-fine-

tuning) LLM, and evaluation is performed using the EleutherAI lm-evaluation-harness 
framework. 

4.2.1. Catastrophic forgetting in LoRA and other PEFT methods 

In the data presented in Table 3, R0
eand R−1

e  represent the evaluation scores of the 
Llama-2-7b model before and after instruction fine-tuning, respectively. R0

e  reflects the 
model's performance on various evaluation sets in its initial state, while R−1

e corresponds 

to the results at the end of the fine-tuning process. The forgetting metric FG (Forgetting 
Gradient) is used to measure the extent to which the LLM (large language model) forgets 

previously learned knowledge during continuous instruction tuning. The results show 
that, whether using traditional fine-tuning methods or efficient fine-tuning techniques 
such as LoRA, the FG values in the three core capabilities of domain knowledge, reasoning, 

and reading comprehension are all greater than zero. This indicates that the stored 
commonsense knowledge in the Llama-2-7b model is forgotten during continuous 

instruction fine-tuning. It is worth noting that all experimental data are based on the 
unified Llama-2-7b model. Therefore, R0

e  in the experiments represents the model's 
original performance on different evaluation datasets, providing a benchmark for 

analyzing and comparing the model's knowledge retention before and after fine-tuning. 

Table 3. Forgetting (FG) of LoRA and other PEFT methods under continual fine-tuning on LLaMA-
2-7B. 

Method/Setting Domain Knowledge Reasoning 
Reading 

Comprehension 

 Re0 Re−1 FG Re0 Re−1 FG Re0 Re−1 FG 

Finetune 42.91 23.08 42.45 60.19 36.69 37.90 39.52 23.44 42.29 

LoRA,r=64,α=1 42.91 39.01 30.79 60.19 57.50 20.03 39.52 38.56 19.69 

LoRA,r=128,α=1 42.91 24.48 38.87 60.19 35.45 40.46 39.52 21.72 43.90 
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LoRA,r=64,α=16 42.91 23.11 40.43 60.19 35.42 40.73 39.52 22.68 43.66 

LoRA,r=64,α=128 42.91 23.11 42.71 60.19 35.49 40.90 39.52 20.96 44.95 

Prefix-Tuning 42.91 25.78 37.15 60.19 37.89 38.54 39.52 23.73 42.05 

P-Tuning 42.91 25.27 36.51 60.19 37.89 38.54 39.52 23.73 42.05 

Prompt-Tuning 42.91 23.98 38.39 60.19 37.67 37.39 39.52 22.30 41.81 

4.2.2. NEFTune combined with LoRA 

We additionally test NEFTune, which injects noise into embeddings during 
instruction fine-tuning, and evaluate whether combining NEFTune with LoRA reduces 

forgetting [26]. 
As shown in Table 4, FG remains greater than zero for domain knowledge, reasoning, 

and reading comprehension even after applying NEFTune+LoRA. This suggests that 

catastrophic forgetting persists: while the model gains new-task ability, it still forgets 
some previously acquired knowledge. 

Table 4. Forgetting (FG) when combining NEFTune with LoRA. 

Method/Setting Domain Knowledge Reasoning 
Reading 

Comprehension 

 Re0 Re−1 FG Re0 Re−1 FG Re0 Re−1 FG 

NEFTune,noise =1 42.91 25.18 40.55 60.19 35.60 40.84 39.52 20.48 43.90 

NEFTune,noise =5 42.91 23.55 42.40 60.19 35.11 40.94 39.52 21.05 42.69 

4.2.3. Does O-LoRA alleviate catastrophic forgetting? 

Finally, we evaluate O-LoRA under the same protocol to assess its effectiveness at 

mitigating catastrophic forgetting in continual learning. 
From Table 5, the FG values for domain knowledge and reasoning are still above zero 

but are noticeably smaller than those of LoRA on the same datasets, and the FG value for 

reading comprehension can become negative. These results indicate that O-LoRA can 
mitigate catastrophic forgetting to some extent in continual fine-tuning, addressing 

challenges faced by LoRA. 

Table 5. Forgetting (FG) of O-LoRA under continual fine-tuning on LLaMA-2-7B. 

Method/Setting Domain Knowledge Reasoning 
Reading 

Comprehension 

 Re0 Re−1 FG Re0 Re−1 FG Re0 Re−1 FG 

OLoRA,r=64,lamda 

=0.5 
42.91 41.43 1.11 60.19 59.74 0.43 39.52 40.67 -1.2 

OLoRA,r=128,lamda 

=0.5 
42.91 41.65 0.77 60.19 59.94 0.25 39.52 39.90 -0.24 

OLoRA,r =64,α=16, 

lamda =0.5 
42.91 40.64 3.49 60.19 60.17 -0.16 39.52 39.90 -0.88 

OLoRA, r=64,α=128, 

lamda =0.5 
42.91 39.76 1.70 60.19 59.24 0.51 39.52 38.47 1.20 

4.3. Performance Evaluation of O-LoRA under Hyperparameter Sweeps 

To examine whether O-LoRA can alleviate catastrophic forgetting under different 
configurations while maintaining good task performance, we extend Experiment 4.1 by 

replacing LoRA with O-LoRA and performing a broad evaluation under various 
hyperparameter settings. We use the Alpaca dataset (52,000 instruction demonstrations 
generated by OpenAI text-davinci-003) to instruction-tune LLaMA-2-7B, and evaluate 

using the EleutherAI lm-evaluation-harness framework. 
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We evaluate TruthfulQA, BLiMP Causative, and MMLU GlobalFacts, as well as 
arithmetic subtraction tasks of different difficulty (e.g., two-digit subtraction such as "7 
minus 66 = −59" and four-digit subtraction such as "6319 minus 2968 = 3351"). Table 6 

summarizes performance across O-LoRA settings. 

Table 6. Performance of O-LoRA under different hyperparameter settings on multiple evaluation 
tasks. 

Method/Set

ting 

truthful 

qa_mcl 

truthful 

qa_mc2 

arithmetic 

_2ds 

arithmetic 

_4ds 

blimp_caus 

ativa 

global_f 

acts 

LLaMA-2-

7B 
0.2521 0.3897 0.5025 0.3635 0.7580 0.2400 

Finetune 0.2754 0.4058 0.5315 0.3720 0.7820 0.3700 

OLoRA,r=64

,α=1 
0.2546 0.3897 0.5020 0.3660 0.7060 0.2400 

OLoRA,r=64

,α=16 
0.2497 0.3880 0.7750 0.3075 0.6400 0.2500 

OLoRA,r=64

,α=32 
0.2460 0.5063 0.0000 0.0000 0.4450 0.1800 

OLoRA,r=64

,α=64 
0.2424 0.4989 0.0000 0.0000 0.4420 0.1800 

OLoRA,r=64

,α=128 
0.2411 0.4959 0.0000 0.0000 0.4350 0.1800 

OLoRA,r=12

8,α=1 
0.2583 0.3887 0.5030 0.3620 0.7470 0.2400 

OLoRA,r=12

8,α=16 
0.2228 0.3323 0.5045 0.3470 0.7180 0.3600 

OLoRA,r=12

8,α=32 
0.2362 0.3644 0.6575 0.3470 0.7310 0.3300 

OLoRA,r=12

8,α=64 
0.2411 0.4943 0.0000 0.0000 0.4090 0.1800 

OLoRA,r=12

8,α=128 
0.2338 0.4957 0.0000 0.0000 0.4400 0.1800 

0LoRA,r=12

8,α=256 
0.2436 0.4982 0.0000 0.0000 0.4450 0.1800 

OLoRA,r=25

6,α=256 
0.2277 0.4894 0.0000 0.0000 0.4500 0.1800 

From Table 6, O-LoRA does not always improve monotonically with larger 
hyperparameters. In some cases, increasing hyperparameters can degrade performance, 

especially on arithmetic (algorithmic) datasets, where O-LoRA may face challenges 
similar to those observed for LoRA. 

These results suggest that while O-LoRA can help mitigate catastrophic forgetting in 
certain settings, it is not a universal solution and may require task- or dataset-specific 
tuning to ensure stable and effective performance. Nonetheless, O-LoRA still shows 

advantages on some challenging tasks, indicating good applicability across diverse tasks 
and datasets. 

We also compare peak memory usage: LoRA (bfloat16), r=64, alpha=16 uses 30.49 GB; 
O-LoRA (bfloat16), r=64, alpha=16 uses 36.26 GB. 

5. Conclusions and Future Work 

Through a series of experiments, we confirm that parameter-efficient fine-tuning 

techniques such as LoRA can indeed suffer from catastrophic forgetting during continual 
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fine-tuning of large language models. To address this challenge, we introduce and 
examine the effectiveness of O-LoRA. Experimental results show that, compared with 
other PEFT methods, O-LoRA exhibits a positive effect in mitigating catastrophic 

forgetting. However, when applying O-LoRA to other datasets and task scenarios, its 
performance can be strongly affected by hyperparameter choices, indicating that it does 

not achieve optimal performance in all cases. This reveals a key limitation of O-LoRA: 
sensitivity to hyperparameter settings and lack of universal robustness across fine-tuning 
environments. Nevertheless, as an innovative approach to addressing catastrophic 

forgetting in continual fine-tuning of LLMs, O-LoRA remains promising. Future work 
should focus on further optimizing and improving O-LoRA to reduce its dependence on 

hyperparameters, better adapting it to diverse datasets and tasks, and ultimately 
achieving more stable and efficient fine-tuning. 
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