Artificial Intelligence and m‘\P

Digital Technology

Article

Mitigating Catastrophic Forgetting in Fine-Tuned Large
Language Models: An Experimental Study of LoRA and O-
LoRA

Xinlan Zhang *

1 Chonggqing Normal University, Chongqing, China
* Correspondence: Xinlan Zhang, Chongqing Normal University, Chongqing, China

Abstract: Large language models (LLMs) have become a hot topic in Al, and since the GPT series
they have achieved remarkable success across many domains. However, directly using a general-
purpose model often fails to meet the needs of specific applications, which motivates fine-tuning
with domain-specific data. Nevertheless, parameter-efficient fine-tuning (PEFT) methods such as
LoRA may perform poorly on certain algorithmic benchmarks, raising concerns about cat-astrophic
forgetting. In this paper, we conduct extensive experiments to confirm this phenomenon and
investigate O-LoRA as a mitigation strategy. Results show that O-LoRA can effectively alleviate
catastrophic forgetting under continual instruction fine-tuning, but its effectiveness can be sensitive
to hyperparameters on some datasets. Overall, O-LoRA provides a practical direction for mitigating
catastrophic forgetting during continual fine-tuning of LLMs.

Keywords: large language models; catastrophic forgetting; parameter-efficient fine-tuning; LoRA;
O-LoRA

1. Introduction

This work investigates catastrophic forgetting that may arise during continual
instruction fine-tuning of large language models (LLMs), with a particular focus on
parameter-efficient fine-tuning (PEFT) methods such as LoRA, and explores O-LoRA as a
mitigation strategy.

Published: 08 February 2026 1.1. Background
Since the Turing Test was proposed in the 1950s, researchers have explored how
BY machines can acquire language intelligence. Language is a complex human expression
Copyright: © 2026 by the authors. system governed by grammatical rules, and developing Al algorithms that understand
Submitted for possible open access and master language remains a major challenge. As an important approach, language
publication under the terms and modeling has been widely used for language understanding and generation over the past
conditions of the Creative Commons two decades, evolving from statistical language models to neural language models. More
Attribution (CC BY) license yecently, pretraining Transformer models on large-scale corpora has led to pretrained
(https:/fereativecommons.orgflicense Janoyage models (PLMs), which show strong capability across a variety of natural
sfoy/0l)- language processing (NLP) tasks. As scaling has been found to increase model capacity,
researchers further explored scaling laws by increasing parameter counts. Interestingly,
once model size exceeds a certain threshold, these scaled-up language models not only
improve performance significantly, but also exhibit abilities not seen in smaller models
(e.g., BERT), such as in-context learning. To distinguish language models of different
scales, the community introduced the term large language models (LLMs), referring to

PLMs with very large scale (e.g., tens or hundreds of billions of parameters) trained on
massive text data, such as GPT-3, PaLM, Galactica, and LLaMA [1-5]. Recently, both

Al Digital Technol., Vol. 3 No. 1(2026) 52 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS
https://soapubs.com/

Al Digital Technol., Vol. 3 No. 1(2026)

academia and industry have accelerated research on LLMs; a prominent milestone is
ChatGPT, a powerful Al chatbot built on LLMs, which has attracted broad attention. The
rapid evolution of LLM technology is reshaping the Al field and may fundamentally
change how we develop and use Al algorithms [6].

1.2. Current Status and Motivation

Pretraining lays the foundation for models to learn linguistic capability. By
pretraining on large corpora, LLMs obtain basic language understanding and generation
abilities [2-3]. However, LLMs are often not well-suited to specific tasks unless they are
fine-tuned. Full-parameter fine-tuning initializes from pretrained weights, updates all
parameters, and produces a separate instance for each task [7]. As model size grows,
updating all parameters and maintaining a separate instance per task becomes impractical.
Parameter-efficient fine-tuning (PEFT) was therefore proposed to adapt LLMs to
downstream tasks efficiently by training only a small subset of parameters-either a subset
of existing parameters or a small set of newly added parameters [8]. Different PEFT
methods vary in parameter efficiency, memory efficiency, training speed, final model
quality, and inference overhead. In recent years, more than a hundred PEFT papers have
been published, and surveys summarize popular approaches, including Adapters, BitFit,
Prefix-Tuning, P-Tuning, Prompt-Tuning, and LoRA [9-15].

Despite their efficiency, fine-tuning may induce catastrophic forgetting-a
phenomenon in machine learning where a model forgets previously learned knowledge
while learning new information [16]. This can limit the generality and scalability of fine-
tuned models in real-world applications [17]. Recent studies suggest that even advanced
PEFT methods like LoRA can exhibit this behavior under certain conditions [16]. Common
mitigation strategies include: (1) experience replay and related methods that store
examples from previous tasks and train jointly with the current task, which may raise
privacy concerns especially for sensitive data; (2) regularization-based methods that add
penalties to the loss to discourage changes to important weights, such as Orthogonal
Gradient Descent (OGD), but OGD requires storing gradients of all historical data and is
infeasible for LLMs; and (3) methods that dynamically expand model capacity or isolate
existing weights to reduce interference, such as Progressive Prompts, although such
methods may generalize poorly to unseen tasks [18-20].

These approaches often face two key limitations: they require storing historical data
or gradients (costly for large models), and they typically update tasks within a shared
vector space that directly affects hidden representations. Motivated by these issues, we
focus on O-LoRA, which aims to overcome both limitations [21].

The main contributions of this paper are summarized as follows:

1) We verify that PEFT methods such as LoRA can improve LLM performance on
some tasks, but also suffer from catastrophic forgetting during continual fine-
tuning.

2) Wevalidate that O-LoRA can alleviate catastrophic forgetting when fine-tuning
LLMs, while also observing that its effectiveness can be sensitive to
hyperparameter choices.

2. Related Work

This section reviews several parameter-efficient fine-tuning techniques, including
Prefix-Tuning, P-Tuning, and Prompt-Tuning. We also describe LoRA, which adapts
models via low-rank decomposition and can significantly reduce trainable parameters
and GPU memory requirements.

2.1. Prefix-Tuning

Prefix-Tuning is a PEFT method for LLMs that adjusts model behavior by
prepending a continuous, learnable sequence of prefix vectors to the input, without

Al Digital Technol., Vol. 3 No. 1(2026)

53 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

updating the full set of model parameters. The prefix is represented as continuous token
embeddings whose influence propagates through all Transformer layers and affects
subsequent tokens.

Concretely, one or two prefixes (for encoder-decoder architectures) are inserted
before the autoregressive LLM input to form a new input sequence z = [PREFIX; x; y] or
[PREFIX; x; PREFIX’; y]. Here Py, denotes the prefix index sequence and |Pyy | is the
prefix length. Unlike discrete prompts drawn from a fixed vocabulary, Prefix-Tuning
treats prefix activations as free parameters defined by a matrix Py (controlled by
parameters 0) with dimension |P,4, | x dim(h;). The training objective remains unchanged,
but the trainable parameter set changes: the original model parameters ¢ are frozen and
only 6 is optimized. Each hidden state h; depends on the learnable prefix
matrixPgregardless of whether its index lies in the prefix range. To improve optimization
stability and performance, Prefix-Tuning uses re-parameterization: instead of directly
updating P, it maps a smaller matrix P, through a large MLPy to obtain Py, and

replaces Pgli,:] with P[i, :]. After training, the re-parameterization parameters can be
discarded and only the prefix P, is stored [12].

2.2. P-Tuning

P-Tuning aims to improve LLM performance on NLP tasks by inserting a set of
continuous, learnable vectors as "virtual tokens" into the input sequence, replacing
embeddings that would otherwise correspond to discrete prompt tokens. The continuous
virtual tokens do not belong to the original vocabulary; rather, they are optimized as a set
of continuous parameters. A template organizes context, targets, and virtual tokens into a
structured input format.

During optimization, P-Tuning faces two main challenges: (1) discreteness, since
pretrained token embeddings are highly discrete, and (2) dependency among prompt
embeddings, since prompt tokens should exhibit correlations rather than evolve
independently. To address these issues, P-Tuning uses lightweight neural architectures
such as bidirectional LSTMs to encode the continuous prompts, helping them better
capture context information and avoid poor local optima [13].

2.3. Prompt-Tuning

Prompt-Tuning is another PEFT approach that learns a set of continuous, optimizable
"soft prompts" while keeping the pretrained model frozen [22,23]. Unlike discrete text
prompts used in models such as GPT-3, soft prompts are updated end-to-end via
backpropagation, and can integrate signals from any number of labeled examples. On
large models such as the T5 family, as the number of parameters grows, the performance
gap between Prompt-Tuning and full fine-tuning narrows and can become comparable
[24]. This makes it possible for a single frozen model to serve multiple downstream tasks,
substantially reducing storage and deployment cost.

In implementation, Prompt-Tuning reformulates tasks as text generation and
prepends a trainable continuous prompt vector to the input. In T5, the soft prompt is
represented as a matrix that is concatenated with the original input embedding matrix as
the encoder-decoder input. During training, only the prompt parameters are updated to
maximize the likelihood of the output sequence, while the main model parameters remain
fixed. Prompt-Tuning can be viewed as a simplified variant of Prefix-Tuning [14].

2.4. LoRA

LoRA (Low-Rank Adaptation) addresses the high storage cost, low computational
efficiency, and deployment challenges of adapting large pretrained language models to
specific tasks or domains. LoRA keeps the pretrained weights fixed and injects trainable
low-rank matrices A and B into each Transformer layer.

Al Digital Technol., Vol. 3 No. 1(2026)

54 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

Specifically, given a pretrained weight matrix W, LoRA introduces a low-rank
update AW = BA, where B € R*{d xr}, A € R*r x k}, and r is much smaller than the
rank of W (i.e, d and k). During fine-tuning, only A and B are optimized, greatly
reducing the number of trainable parameters for downstream tasks and lowering GPU
memory usage. Compared with GPT-3 fine-tuned with Adam, LoRA can reduce trainable
parameters by up to 10,000x and cut GPU memory requirements by about 3x [15,25].

3. O-LoRA Method

To address catastrophic forgetting, this paper introduces O-LoRA. While keeping
pretrained weights fixed, O-LoRA uses a low-rank parameter update mechanism under
an orthogonality constraint to limit interference across tasks during learning, thereby
reducing catastrophic forgetting.

O-LoRA (Orthogonal Low-Rank Adaptation) is a simple and efficient PEFT method
proposed for continual learning with LLMs. In continual learning, a model learns a
sequence of tasks, and knowledge from earlier tasks may be overwritten by later tasks. O-
LoRA leverages the intrinsic low-rank property of weight updates during fine-tuning and
constrains different tasks to be learned in mutually orthogonal low-rank subspaces.

Concretely, for each new task O-LoRA uses new low-rank matrices A and B to form
Wine+ AW = W, + AB. The task-specific update computed from A and B is
constrained to be orthogonal to the gradient subspace of previous tasks, which reduces
interference and mitigates forgetting. Experiments show that O-LoRA outperforms prior
state-of-the-art methods on standard continual learning benchmarks, maintains strong
average performance even across many tasks, and better preserves the generalization
ability of LLMs to unseen tasks. Importantly, it avoids privacy risks by not requiring
storage of user data for replay, and does not rely on task identifiers at test time, making it
well-aligned with the instruction-tuning setting [21].

4. Experimental Design and Results
4.1. Performance of LoRA and Other PEFT Methods

We conduct instruction fine-tuning on the LLaMA-2-7B model using the Alpaca
dataset, and evaluate the resulting models on TruthfulQA, BLiMP Causative, MMLU
GlobalFacts, as well as arithmetic tasks. We compare LoRA under different
hyperparameter settings with other PEFT methods to analyze performance changes.

Experimental setup: We fine-tune LLaMA-2-7B on Alpaca, which contains 52,000
instruction instances with demonstrations generated by OpenAl text-davinci-003, and is
commonly used to improve instruction-following ability. For evaluation, we use
representative NLP benchmarks (TruthfulQA, BLiMP Causative, MMLU GlobalFacts)
and two arithmetic subtraction tasks of different difficulty (two-digit and four-digit
subtraction). We systematically sweep LoRA hyperparameters (rank r and scaling o) and
record accuracy on each evaluation task for each configuration.

From Table 1, we confirm that PEFT methods such as LoRA can improve model
performance on some datasets. However, on arithmetic (algorithmic) datasets, we observe
that under certain hyperparameter settings the accuracy of LoRA fine-tuned models drops
substantially. Similar behavior appears for Prefix-Tuning, P-Tuning, and Prompt-Tuning,
suggesting that these methods may encounter catastrophic forgetting or instability in
continual learning scenarios.

Al Digital Technol., Vol. 3 No. 1(2026)

55 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

Table 1. Performance of LoRA under different hyperparameter settings and other PEFT methods
on multiple evaluation tasks.

Method/Set truthful truthful arithmetic arithmetic blimp_caus global_f

ting ga_mcl ga_mc2 _2ds _4ds ativa acts
LLal;/éA'z' 0.2521 0.3897 0.5025 0.3635 0.7580 0.2400
Finetune 0.2754 0.4058 0.5315 0.3720 0.7820 0.3700
L°R2L1r=64’ 0.2521 0.3740 0.5245 0.3700 0.7680 0.3300
LORO‘?_’lr;M’ 0.2619 0.4068 0.8275 0.5070 0.7650 0.3700
LORﬁ_’;;M’ 0.2619 0.3995 0.6600 0.4620 0.7730 0.3600
LORO‘(A_’ 61=64’ 0.2411 0.3695 0.6225 0.0880 0.7540 0.3200
Loijfi ;;64’ 0.2448 0.4959 0.0000 0.0000 0.4200 0.1800
LORi’_’Tm’ 02546 03730 05310 03695 07760 0.3500
LORﬁ_’ian’ 0.2931 0.4387 0.5255 0.3570 0.7710 0.3500
LOROJ:22128’ 0.2644 0.4461 0.4100 0.1360 0.7310 0.3900
LOR(?_’ZZH& 0.2166 0.3367 0.0000 0.0000 0.6700 0.2900
LOI:E’E 8128’ 0.2436 0.4949 0.0000 0.0000 0.4280 0.1800
LOI;{‘;;QZS’ 0.2424 0.5000 0.0000 0.0000 0.4530 0.1800
LoRAr=256,) 5387 0.5027 0.0000 0.0000 0.4490 0.1800
a=256
Prefix- 0.2436 0.4858 0.0000 0.0000 0.3910 0.1800
Tuning
P-Tuning 0.2326 0.4845 0.0000 0.0000 0.4050 0.2300
Prompt- > 41 0.4867 0.0000 0.0000 0.3990 0.2100
Tuning

4.2. Verifying Catastrophic Forgetting and the Effect of O-LoRA

To further analyze the phenomenon observed in Experiment 4.1-namely catastrophic
forgetting during fine-tuning with PEFT methods such as LoRA-we follow the continual
learning perspective and evaluation protocol described in "An Empirical Study of
Catastrophic Forgetting in Large Language Models During Continual Fine-tuning" [26].
We design a sequence of instruction-tuning tasks to examine both learning ability and
knowledge retention.

We consider three core instruction-tuning tasks:

1) Text simplification (Simp): simplifying complex text into an easier-to-

understand form.

2) Explanation generation (Exp): generating natural language explanations for a

given premise, hypothesis, or label to demonstrate deeper understanding and
reasoning.

Al Digital Technol., Vol. 3 No. 1(2026)

56 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

3) Inquisitive question generation (InqQG): generating questions from a long-form
answer to test information extraction and reverse reasoning ability.
For evaluation, we use three categories of general-purpose metrics and
representative benchmark datasets, summarized in Table 2.

Table 2. Evaluation sets and their elements used in this study.

Set Elements
Domain Knowledge (DK) MMLU: STEM; Social; Human; Other
. BoolQ); PIQA; Winogrande; HellaSwag;
Reasoning (Rs) MathQA; Mutual
Reading Comprehension (RC) RACE-high; RACE-middle

Specifically: (1) Domain knowledge is evaluated using the multi-task language
understanding benchmark MMLU, measuring knowledge storage and application across
STEM, Human, Social, and Other categories; (2) Reasoning ability is tested with widely
used commonsense reasoning datasets (HellaSwag, Winogrande, PIQA), along with
MathQA for mathematical reasoning and Mutual for dialogue reasoning; (3) Reading
comprehension is evaluated on RACE using both middle- and high-difficulty splits to
reflect deep understanding and information extraction from complex texts.

Let E;(i = 1,2,3) denote the above evaluation sets. Each set contains multiple
datasets or splits (Table 2). For example, E; corresponds to MMLU and contains STEM,
Human, Social, and Other. For each element e in E ;, we denote the evaluation score after
the m-th continual learning task as R§,. Following, we use the average decrease in scores
as a surrogate measure of forgetting, defined as the Forgetting Gradient (FG;) [17]:

e _ pe
FG; = ﬁZeeEiﬁ &:1%* 100%, where R§ is the score of the initial (pre-fine-
i 0
tuning) LLM, and evaluation is performed using the EleutherAl Im-evaluation-harness
framework.

4.2.1. Catastrophic forgetting in LoRA and other PEFT methods

In the data presented in Table 3, Rjand R¢,; represent the evaluation scores of the
Llama-2-7b model before and after instruction fine-tuning, respectively. R§ reflects the
model's performance on various evaluation sets in its initial state, while R¢;corresponds
to the results at the end of the fine-tuning process. The forgetting metric FG (Forgetting
Gradient) is used to measure the extent to which the LLM (large language model) forgets
previously learned knowledge during continuous instruction tuning. The results show
that, whether using traditional fine-tuning methods or efficient fine-tuning techniques
such as LoRA, the FG values in the three core capabilities of domain knowledge, reasoning,
and reading comprehension are all greater than zero. This indicates that the stored
commonsense knowledge in the Llama-2-7b model is forgotten during continuous
instruction fine-tuning. It is worth noting that all experimental data are based on the
unified Llama-2-7b model. Therefore, Rf in the experiments represents the model's
original performance on different evaluation datasets, providing a benchmark for
analyzing and comparing the model's knowledge retention before and after fine-tuning.

Table 3. Forgetting (FG) of LoRA and other PEFT methods under continual fine-tuning on LLaMA-
2-7B.

Method/Setting Domain Knowledge Reasoning Readmg.
Comprehension
Reoe Rea FG Ree Rea FG Reo Req FG
Finetune 4291 23.08 4245 60.19 36.69 37.90 39.52 23.44 42.29

LoRA,r=64,a=1 4291 39.01 30.79 60.19 5750 20.03 39.52 38.56 19.69
LoRA,r=128,a=1 4291 2448 38.87 60.19 3545 4046 39.52 21.72 43.90

Al Digital Technol., Vol. 3 No. 1(2026)

57 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

LoRAr=64,a=16 4291 23.11 40.43 60.19 35.42 40.73 39.52 22.68 43.66
LoRAr=64,a=128 4291 23.11 4271 60.19 3549 4090 39.52 2096 44.95
Prefix-Tuning 4291 2578 3715 60.19 37.89 3854 39.52 23.73 42.05
P-Tuning 4291 2527 36.51 60.19 37.89 3854 39.52 23.73 42.05
Prompt-Tuning 4291 2398 38.39 60.19 37.67 3739 39.52 2230 41.81

4.2.2. NEFTune combined with LoRA

We additionally test NEFTune, which injects noise into embeddings during
instruction fine-tuning, and evaluate whether combining NEFTune with LoRA reduces
forgetting [26].

As shown in Table 4, FG remains greater than zero for domain knowledge, reasoning,
and reading comprehension even after applying NEFTune+LoRA. This suggests that
catastrophic forgetting persists: while the model gains new-task ability, it still forgets
some previously acquired knowledge.

Table 4. Forgetting (FG) when combining NEFTune with LoRA.

Reading
Comprehension
Ro Res FG Reo Rex FG Ro Rear FG
NEFTunenoise=1 4291 25.18 40.55 60.19 35.60 40.84 39.52 20.48 43.90
NEFTunenoise=5 42.91 23.55 4240 60.19 35.11 4094 39.52 21.05 42.69

Method/Setting Domain Knowledge Reasoning

4.2.3. Does O-LoRA alleviate catastrophic forgetting?

Finally, we evaluate O-LoRA under the same protocol to assess its effectiveness at
mitigating catastrophic forgetting in continual learning.

From Table 5, the FG values for domain knowledge and reasoning are still above zero
but are noticeably smaller than those of LoRA on the same datasets, and the FG value for
reading comprehension can become negative. These results indicate that O-LoRA can
mitigate catastrophic forgetting to some extent in continual fine-tuning, addressing
challenges faced by LoRA.

Table 5. Forgetting (FG) of O-LoRA under continual fine-tuning on LLaMA-2-7B.

Reading
Comprehension
Reo Re1 FG Reo Rea FG Reo Re FG

Method/Setting Domain Knowledge Reasoning

OLoRAr=64lamda) o1 4143 111 6019 5074 043 3952 40.67 -12

05
OLORA’:)lSZS’lamda 4291 4165 077 6019 5994 025 3952 3990 -0.24
OLORAr=64,0=16,) 51 4064 349 6019 6017 -0.16 39.52 3990 -0.88
lamda =0.5
OLORA, 1=64,0=128,) 51 3976 170 6019 5924 051 3952 3847 1.0
lamda =0.5

4.3. Performance Evaluation of O-LoRA under Hyperparameter Sweeps

To examine whether O-LoRA can alleviate catastrophic forgetting under different
configurations while maintaining good task performance, we extend Experiment 4.1 by
replacing LoRA with O-LoRA and performing a broad evaluation under various
hyperparameter settings. We use the Alpaca dataset (52,000 instruction demonstrations
generated by OpenAl text-davinci-003) to instruction-tune LLaMA-2-7B, and evaluate
using the EleutherAl Im-evaluation-harness framework.

Al Digital Technol., Vol. 3 No. 1(2026) 58 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

We evaluate TruthfulQA, BLiMP Causative, and MMLU GlobalFacts, as well as
arithmetic subtraction tasks of different difficulty (e.g., two-digit subtraction such as "7
minus 66 = -59" and four-digit subtraction such as "6319 minus 2968 = 3351"). Table 6
summarizes performance across O-LoRA settings.

Table 6. Performance of O-LoRA under different hyperparameter settings on multiple evaluation
tasks.

Method/Set truthful truthful arithmetic arithmetic blimp_caus global_f

ting qa_mcl qa_mc2 _2ds _4ds ativa acts
LLal;/éA'z' 0.2521 0.3897 0.5025 0.3635 0.7580 0.2400
Finetune 02754 04058 05315 03720 07820 0.3700
OLOI:_?:M 02546 03897 05020 03660 07060 0.2400
OLOOI({_Al':M 02497 03880 07750 03075 06400 0.2500
OLOO%;:M 0.2460 0.5063 0.0000 0.0000 0.4450 0.1800
OLOOI({:Z%"‘ 02424 04989 00000 00000 04420 0.1800
OLZIE?;;:M 02411 04959 00000 00000 04350 0.1800
OL(;%*_';:H 02583 03887 05030 03620 07470 0.2400
OL;’I;f_*irglz 02228 03323 05045 03470 07180 0.3600
OL;’I;:;:H 02362 03644 06575 03470 07310 0.3300
OL;’I;:TZ 02411 04943 00000 00000 04090 0.1800
OLORAT=E2 17338 04957 00000 00000 04400 0.1800
8,0-128
OLORATZI2 " o2436 04982 00000 00000 04450 0.1800
8,0-256
OZOSZ;ZZS 02277 04894 00000 00000 04500 0.1800

From Table 6, O-LoRA does not always improve monotonically with larger
hyperparameters. In some cases, increasing hyperparameters can degrade performance,
especially on arithmetic (algorithmic) datasets, where O-LoRA may face challenges
similar to those observed for LoRA.

These results suggest that while O-LoRA can help mitigate catastrophic forgetting in
certain settings, it is not a universal solution and may require task- or dataset-specific
tuning to ensure stable and effective performance. Nonetheless, O-LoRA still shows
advantages on some challenging tasks, indicating good applicability across diverse tasks
and datasets.

We also compare peak memory usage: LoRA (bfloat16), r=64, alpha=16 uses 30.49 GB;
O-LoRA (bfloat16), r=64, alpha=16 uses 36.26 GB.

5. Conclusions and Future Work

Through a series of experiments, we confirm that parameter-efficient fine-tuning
techniques such as LoRA can indeed suffer from catastrophic forgetting during continual

Al Digital Technol., Vol. 3 No. 1(2026)

59 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

fine-tuning of large language models. To address this challenge, we introduce and
examine the effectiveness of O-LoRA. Experimental results show that, compared with
other PEFT methods, O-LoRA exhibits a positive effect in mitigating catastrophic
forgetting. However, when applying O-LoRA to other datasets and task scenarios, its
performance can be strongly affected by hyperparameter choices, indicating that it does
not achieve optimal performance in all cases. This reveals a key limitation of O-LoRA:
sensitivity to hyperparameter settings and lack of universal robustness across fine-tuning
environments. Nevertheless, as an innovative approach to addressing catastrophic
forgetting in continual fine-tuning of LLMs, O-LoRA remains promising. Future work
should focus on further optimizing and improving O-LoRA to reduce its dependence on
hyperparameters, better adapting it to diverse datasets and tasks, and ultimately
achieving more stable and efficient fine-tuning.

References

1. M. Shanahan, "Talking about large language models," Communications of the ACM, vol. 67, no. 2, pp. 68-79, 2024. doi:
10.1145/3624724

2. T.Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, and D. Amodei, "Language models are few-shot learners,"
Advances in neural information processing systems, vol. 33, pp. 1877-1901, 2020.

3. A.Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, and N. Fiedel, "Palm: Scaling language modeling with
pathways," Journal of Machine Learning Research, vol. 24, no. 240, pp. 1-113, 2023.

4. R Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, and R. Stojnic, "Galactica: A large language model for
science," arXiv preprint arXiv:2211.09085, 2022.

5. H.Touvron, T. Lavril, G. Izacard, X. Martinet, M. A. Lachaux, T. Lacroix, and G. Lample, "Llama: Open and efficient foundation
language models," arXiv preprint arXiv:2302.13971, 2023.

6. W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, and J. R. Wen, "A survey of large language models," arXiv preprint
arXiv:2303.18223, vol. 1, no. 2, 2023.

7. N.Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, and M. Sun, "Parameter-efficient fine-tuning of large-scale pre-trained language
models," Nature machine intelligence, vol. 5, no. 3, pp. 220-235, 2023. doi: 10.1038/s42256-023-00626-4

8. V. Lialin, V. Deshpande, and A. Rumshisky, "Scaling down to scale up: A guide to parameter-efficient fine-tuning," arXiv
preprint arXiv:2303.15647, 2023.

9. N.Ding Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, and M. Sun, "Delta tuning: A comprehensive study of parameter efficient
methods for pre-trained language models," arXiv preprint arXiv:2203.06904, 2022. doi: 10.21203/rs.3.rs-1553541/v1

10. N.Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, and S. Gelly, "Parameter-efficient transfer
learning for NLP," In International conference on machine learning, May, 2019, pp. 2790-2799.

11. E. B. Zaken, Y. Goldberg, and S. Ravfogel, "Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked
language-models," In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
May, 2022, pp. 1-9.

12. X.L.Li and P. Liang, "Prefix-tuning: Optimizing continuous prompts for generation," arXiv preprint arXiv:2101.00190, 2021. doi:
10.18653/v1/2021.acl-long.353

13. X.Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, "GPT understands, too," AI Open, vol. 5, pp. 208-215, 2024. doi:
10.1016/j.aiopen.2023.08.012

14. B. Lester, R. Al-Rfou, and N. Constant, "The power of scale for parameter-efficient prompt tuning," arXiv preprint
arXiv:2104.08691, 2021. doi: 10.18653/v1/2021.emnlp-main.243

15. E.].Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen, "Lora: Low-rank adaptation of large language models,"
ICLR, vol. 1, no. 2, p. 3, 2022.

16. H. Li, L. Ding, M. Fang, and D. Tao, "Revisiting catastrophic forgetting in large language model tuning," arXiv preprint
arXiv:2406.04836, 2024. doi: 10.18653/v1/2024.findings-emnlp.249

17. Y.Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, and Y. Zhang, "An empirical study of catastrophic forgetting in large language models
during continual fine-tuning," IEEE Transactions on Audio, Speech and Language Processing, 2025. doi: 10.1109/taslpro.2025.3606231

18. D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, "Experience replay for continual learning," Advances in neural
information processing systems, vol. 32, 2019.

19. M. Farajtabar, N. Azizan, A. Mott, and A. Li, "Orthogonal gradient descent for continual learning," In International conference on
artificial intelligence and statistics, June, 2020, pp. 3762-3773.

20. A. Razdaibiedina, Y. Mao, R. Hou, M. Khabsa, M. Lewis, and A. Almahairi, "Progressive prompts: Continual learning for

language models," arXiv preprint arXiv:2301.12314, 2023.

Al Digital Technol., Vol. 3 No. 1(2026) 60 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

Al Digital Technol., Vol. 3 No. 1(2026)

21.

22.

23.

24.

25.

26.

X.Wang, T. Chen, Q. Ge, H. Xia, R. Bao, R. Zheng, and X.]. Huang, "Orthogonal subspace learning for language model continual
learning," In Findings of the Association for Computational Linguistics: EMNLP 2023, December, 2023, pp. 10658-10671.

J. Huang, L. Cui, A. Wang, C. Yang, X. Liao, L. Song, and]. Su, "Mitigating catastrophic forgetting in large language models
with self-synthesized rehearsal," arXiv preprint arXiv:2403.01244, 2024. doi: 10.18653/v1/2024.acl-long.77

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, and S. Bowman, "Superglue: A stickier benchmark for
general-purpose language understanding systems," Advances in neural information processing systems, vol. 32, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, and P. J. Liu, "Exploring the limits of transfer learning with a
unified text-to-text transformer," Journal of machine learning research, vol. 21, no. 140, pp. 1-67, 2020.

Y. Zhai, S. Tong, X. Li, M. Cai, Q. Qu, Y. J. Lee, and Y. Ma, "Investigating the catastrophic forgetting in multimodal large
language model fine-tuning," In Conference on Parsimony and Learning, January, 2024, pp. 202-227.

N. Jain, P. Y. Chiang, Y. Wen, J. Kirchenbauer, H. M. Chu, G. Somepalli, and T. Goldstein, "Neftune: Noisy embeddings improve
instruction finetuning," arXiv preprint arXiv:2310.05914, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of SOAP and/or the editor(s). SOAP and/or the editor(s) disclaim responsibility for any injury
to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Al Digital Technol., Vol. 3 No. 1(2026) 61 https://soapubs.com/index.php/AIDT

https://soapubs.com/index.php/ICSS

	1. Introduction
	1.1. Background
	1.2. Current Status and Motivation

	2. Related Work
	2.1. Prefix-Tuning
	2.2. P-Tuning
	2.3. Prompt-Tuning
	2.4. LoRA

	3. O-LoRA Method
	4. Experimental Design and Results
	4.1. Performance of LoRA and Other PEFT Methods
	4.2. Verifying Catastrophic Forgetting and the Effect of O-LoRA
	4.2.1. Catastrophic forgetting in LoRA and other PEFT methods
	4.2.2. NEFTune combined with LoRA
	4.2.3. Does O-LoRA alleviate catastrophic forgetting?

	4.3. Performance Evaluation of O-LoRA under Hyperparameter Sweeps

	5. Conclusions and Future Work
	References

