

Teaching Ethical Reasoning with AI-Generated Dilemmas: A Module Design for Interpreter Education

Can Cui^{1,*}

¹ School of Foreign Studies, Zhongnan University of Economics and Law, Wuhan, 430073, China

* Correspondence: Can Cui, School of Foreign Studies, Zhongnan University of Economics and Law, Wuhan, 430073, China

Abstract: While artificial intelligence (AI) has been increasingly integrated into interpreting workflows, pedagogical resources that systematically develop ethical reasoning competence in this context remain scarce. This article addresses preparing interpreter students for ethical reasoning in technology-mediated contexts where AI systems pose novel dilemmas concerning data privacy, transparency, responsibility, and equity, and presents a four-week module design using AI-generated scenarios to develop such competence. Drawing on situated learning and reflective practice, the module combines scenario-based learning, dialogic pedagogy, and critical AI literacy. The design progresses from instructor-led analysis to student-led facilitation, with each two-hour session combining small-group scenario analysis, facilitated discussion and reflection. Large language models (LLMs) generate ethical dilemmas tailored to institutional contexts, while instructors critically curate this content and model systematic evaluation of AI outputs. Assessment comprises participation, applied framework analysis, and reflective essays examining reasoning processes. The article provides implementation guidance including session structures, facilitator strategies, scenario generation principles, and assessment frameworks adaptable to diverse contexts. The design demonstrates how AI, when critically framed, can scaffold ethics education by developing dual competencies increasingly essential for interpreters: technical facility with AI tools alongside critical literacy about their limitations.

Keywords: interpreter education; professional ethics; ethical reasoning; artificial intelligence; large language models; scenario-based learning; pedagogical design

Published: 17 January 2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Professional interpreters regularly confront ethical dilemmas that resist simple rule-based solutions. As Baker and Maier argue, ethical competence involves recognizing dilemmas, weighing competing principles, and justifying decisions contextually instead of merely memorizing standards [1]. However, ethics education in translator and interpreter training often remains decontextualized, focusing on codes or stand-alone theory units that minimally engage with contemporary practice [2,3].

Over the past decade, AI-enhanced tools, remote platforms, and digital solutions have become standard across interpreters' workflows [4,5]. Such integration has intensified these pedagogical challenges, raising new ethical concerns around data protection, accountability for errors, and fairness regarding bias and unequal access [5,6]. Professional codes developed before widespread AI adoption offer limited guidance (e.g., the AIIC Code of Professional Ethics, 2020), yet LLMs' capacity to generate contextually

appropriate text suggests unexplored pedagogical potential-these systems might become tools for ethics education itself [7].

This article presents a four-week module using AI-generated scenarios to develop students' ethical reasoning in AI-mediated interpreting contexts. The design integrates scenario-based learning-well-established in professional ethics education -with dialogic pedagogy that positions students as active participants in reasoning [8]. Drawing on situated learning and reflective practice, it cultivates capacity for contextual judgment beyond rule-following [9,10]. The article makes two contributions: detailed pedagogical guidance that educators can adapt to their contexts, and a demonstration of how AI-when critically framed-can scaffold students' development as ethically reflective practitioners.

2. Pedagogical Rationale

2.1. Why Scenario-Based Learning for Ethics

Scenario-based learning positions learners as decision-makers integrating normative principles with contextual judgment [8]. Grounded in situated learning [9], this method excels in professional ethics by replicating the complexity, ambiguity, and stakeholder dynamics of real practice, demanding active reasoning over passive reception [11]. In interpreter education specifically, ethical competence requires recognizing when principles conflict, analyzing situations from multiple stakeholder perspectives, and constructing defensible justifications [1]. Ethnographic research shows interpreters constantly negotiate role boundaries and make consequential decisions about visibility and information management [12], often navigating institutional power relations where codes offer limited guidance [13]. Scenario-based pedagogy provides structured space for practicing such reasoning before facing high-stakes dilemmas professionally, developing capacity for situated judgment rather than mechanical rule application [14].

2.2. Role of AI in Scenario Generation

Large language models offer distinctive affordances for scenario-based ethics education. LLMs generate diverse, contextualized scenarios rapidly, enabling instructors to customize dilemmas for specific learning objectives, student backgrounds, or emerging professional issues [7]. They can tailor scenarios to particular institutional settings, language combinations, or regional frameworks. However, LLMs are prone to hallucination-generating plausible but factually incorrect information-and may reproduce biases present in training data [15,16]. Therefore, instructors should act as critical curators who review, modify, and contextualize AI-generated content, while students are explicitly taught to evaluate scenario quality and identify potential biases. The pedagogical response is not to avoid AI-generated scenarios but to frame their use as an opportunity to model critical AI literacy. In this collaborative human-AI arrangement, AI tools provide flexible scenario generation, but pedagogical judgment and ethical responsibility remain firmly with human teachers [7,17].

2.3. Learning Objectives

The module develops four interrelated competence dimensions. Knowledge objectives: identify AI-relevant ethical domains (confidentiality, transparency, responsibility, equity), reference codes, and recognize principles in tension [3]; Skills objectives: analyze dilemmas systematically using structured frameworks, construct reasoned arguments, and facilitate ethical discussions productively; Dispositional objectives: develop critical reflexivity regarding personal values and positioning, tolerance for ambiguity, and professional identity as ethically responsible practitioners [13]; Meta-competence objectives: cultivate critical AI literacy by evaluating AI content for accuracy and bias, recognizing AI's limitations for ethical reasoning, and positioning oneself as critical collaborator with technology [6,7].

3. Module Design

3.1. Module Overview

The module comprises four two-hour weekly sessions designed for master's-level interpreter education students. The design assumes class sizes of 12-20 students to enable substantive discussion. Students should have prior familiarity with professional codes (e.g., the NCIHC Code of Ethics, 2004; the AIIC Code of Professional Ethics, 2020) but need not have formal ethics training or AI experience.

The pedagogical architecture alternates between instructor-led framing and student-centered inquiry, following principles of gradual release: instructor-led analysis in Week 1 progresses toward student-led facilitation in Week 4 [18]. Required materials include access to an LLM (free versions sufficient), a learning management system, and collaborative document software.

Assessment comprises three components: participation and facilitation (40%), applied analysis assignment after Week 2 (30%), and reflective essay tracing ethical reasoning development (30%). While designed as a standalone module, content can be integrated into broader professional issues courses or condensed into intensive workshop formats.

3.2. Week 1: Introduction to AI Ethics in Interpreting

Session objectives: Students will (1) identify four ethical domains affected by AI integration; (2) understand the module's pedagogical approach; and (3) gain initial experience generating and evaluating AI-produced scenarios.

Opening: The session begins with an icebreaker involving three non-AI ethical vignettes in which students vote privately on their chosen actions. When responses vary—as they inevitably do—this demonstrates that ethical judgment is neither uniform nor obvious. The activity establishes norms for respectful disagreement while framing what the module aims to develop: not “correct answers,” but the capacity to reason through complexity [8].

Conceptual framing: A 40-minute presentation introduces contemporary AI applications in interpreting and their ethical implications, drawing on recent professional discussions [3,5]. The instructor maps four ethical domains that will structure the module's exploration: (1) confidentiality and data privacy (client consent for AI processing, data retention policies); (2) transparency and disclosure (when to inform clients about AI use); (3) responsibility and accountability (who bears responsibility for AI errors); and (4) equity and access (disparities in tool availability across languages). Concrete examples from professional practice or case law help make abstract principles tangible.

Hands-on activity: The final hour introduces AI scenario generation through guided practice. The instructor demonstrates live how to prompt an LLM, using a template that specifies context (medical/legal/conference settings), ethical focus (confidentiality/transparency/responsibility/equity), stakeholder requirements (at least three parties with competing interests), length (200-250 words), and neutral tone. The prompt also explicitly instructs the AI to avoid cultural stereotypes and villainous characterizations—though as students will discover, such instructions don't guarantee unbiased output. After observing the instructor evaluate generated scenarios for strengths (specificity, realism, genuine tensions) and weaknesses (stereotypes, missing context, oversimplification), students work in pairs to generate their own scenarios using varied prompts. They post results to a shared document where peers can review and comment. This dual process—generating scenarios while simultaneously developing critical evaluation skills—proves essential both within the module and for future professional use [7].

Homework: Students read two confidentiality-focused scenarios that are provided by the instructor, review relevant sections of professional codes, and record initial reactions in reflection journals that will track their evolving thinking across the four weeks.

3.3. Week 2: Confidentiality and Data Privacy Dilemmas

Session objectives: Students will (1) apply structured analytical frameworks to confidentiality dilemmas; (2) practice stakeholder perspective-taking; and (3) articulate how technology reshapes confidentiality obligations.

Warm-up: A 20-minute matching exercise asks students to align code excerpts with practical situations ranging from in-person interpreting to cloud-based AI systems. This shows how technology complicates what seem like straightforward principles. Discussion reveals key ambiguities: while codes prohibit unauthorized disclosure, they rarely specify whether uploading session notes to AI systems constitutes "disclosure."

Core activity: The session centers on "The AI Transcription Mandate," a scenario in which a hospital requires interpreters to use an AI transcription system for quality assurance, even though the patient consent process never mentions automated processing. The scenario includes institutional justifications ("the system is encrypted and secure"), interpreter concerns about patient privacy with external server storage, and ambiguity about whether hospital policy can override codes' confidentiality provisions. Working in groups of four using structured worksheets, students identify stakeholders (patient, interpreter, hospital administration, AI vendor), map principles (confidentiality, quality improvement, institutional compliance), and articulate tensions between them.

The worksheet design reflects research on structured controversy: rather than asking "What should the interpreter do?", it first requires generating arguments for multiple courses of action before evaluating options [19]. This structure prevents premature closure and ensures students genuinely engage with the dilemma's complexity.

Whole-class discussion: Groups begin by sharing how they framed the dilemma, revealing that students often foreground different stakeholders depending on prior experiences-a pattern consistent with research on ethical reasoning as culturally situated [13]. The instructor then probes underlying assumptions: "The hospital justifies this as 'quality assurance'. How does framing it as quality rather than surveillance change the ethical calculus?" Next, students explore power dynamics, considering what leverage individual interpreters possess when institutional policies seem non-negotiable. Finally, the class considers what this case reveals about AI ethics more broadly: that individual commitment to confidentiality may prove insufficient when systems embed surveillance logics, suggesting interpreters may need collective professional advocacy [20].

Framework development: The session concludes by co-constructing a five-step ethical decision-making framework with students: (1) identify the situation and affected parties; (2) analyze relevant principles and the tensions between them; (3) generate multiple action options; (4) evaluate options against principles and likely consequences; (5) reflect on decisions and what they mean for professional identity. This framework, adapted from nursing ethics education, provides students with a portable heuristic they can apply to future dilemmas [21].

Homework: Students analyze another confidentiality scenario in 300-400 words using the framework, submitted before Week 3.

3.4. Week 3: Responsibility and Transparency Issues

Session objectives: Students will (1) analyze distributed responsibility in human-AI workflows; (2) evaluate arguments for and against AI use disclosure; and (3) practice facilitating ethical discussions through role-play.

Opening Debrief: The session opens with 25 minutes reviewing Week 2 homework. Rather than focusing on individual feedback, the instructor shares aggregate patterns, then highlights two exemplary analyses (with permission) that model reasoning quality: explicit articulation of steps, acknowledgment of competing values, and recognition that uncertainty is inherent rather than a flaw [1].

Role-play activity: Students engage with "The Disclosure Dilemma"-a scenario presenting a conference interpreter who used an LLM to generate terminology glossaries

and background briefings for an international summit. The AI-assisted preparation worked well; no errors occurred and the assignment proceeded smoothly. Now drafting a post-assignment report for the contracting agency, the interpreter faces a question: whether to disclose AI use. The contract neither prohibits nor requires such disclosure, and the client has not explicitly asked about preparation methods.

Students receive roles-interpreter, agency manager, client representative, professional association delegate, observer-with character briefs outlining each stakeholder's interests and concerns. The agency manager prioritizes client satisfaction and cost efficiency, viewing AI as a competitive advantage. The professional association representative focuses on collective standards and long-term professional reputation, concerned that non-disclosure might undermine client trust if discovered later. Students have 20 minutes to simulate a policy discussion about whether disclosure should be mandated.

Post-role-play debriefing: Students first articulate their role's position while remaining in character, then shift to analytical distance. From this new vantage point, they explore: Which arguments proved compelling? How did institutional position shape what seemed reasonable? What surprised them about other perspectives? Where did competing values prove genuinely incommensurable? This structure-moving from immersive advocacy to distanced analysis-mirrors Schön's reflection-on-action, supporting metacognitive awareness development [10].

Responsibility analysis: The scenario "The AI Terminology Error" shifts the focus to a case in which an interpreter relied on an AI-generated glossary without verification, resulting in a hallucinated technical term that was noticed by the client and prompted a complaint. Students engage in fault-tree analysis to map contributing factors, including AI hallucination, the interpreter's failure to verify outputs, time pressure from assignment deadlines, inadequate training on AI limitations, and system designs that present outputs with inappropriate confidence.

Discussion introduces the concept of "responsibility gaps" in complex socio-technical systems: while identifying single causes often proves impossible, interpreters nonetheless bear professional accountability [22,23]. They cannot deflect responsibility by citing AI involvement-the decision to use unverified AI outputs was itself a professional choice.

Closure: Students complete sentence stems, such as "When using AI tools, I am responsible for ..." and "Transparency requires that I ...". These brief reflections demonstrate how analytical frameworks are being integrated into their emerging professional identities.

Homework: Students generate an ethical scenario, create a 10-minute facilitation plan, and prepare to lead class discussion in Week 4.

3.5. Week 4: Synthesis and Professional Identity Formation

Session objectives: Students will (1) facilitate peer learning through scenario presentations; (2) synthesize insights across the module's trajectory; and (3) articulate personal ethical stances.

Student-led facilitations: The first 80 minutes feature eight students presenting scenarios they generated or adapted across diverse contexts-legal interpreting with AI translation requests, signed-language interpreting with video relay monitoring, conference interpreting and collective action when agencies mandate concerning tools. Each student receives 10 minutes to introduce their dilemma, pose discussion questions, and guide peer analysis. The variety demonstrates students' capacity to transfer the module's frameworks across settings and modalities. Throughout, the instructor serves as timekeeper and supportive observer, while peers offer appreciative feedback after each presentation.

Synthesis discussion: A 30-minute whole-class discussion addresses three questions. "What patterns emerged across scenarios?" Students identify recurring tensions-

individual ethics versus institutional mandates, short-term efficiency versus long-term trust, personal responsibility versus systemic constraints. "How has your thinking changed over these four weeks?" Students name assumptions that were challenged or new complexities they've come to appreciate. "What guidance does the profession still need?" Students identify gaps in existing codes and consider how they might contribute to policy development. This final question positions them not as passive recipients of professional norms but as potential agents of norm evolution-a stance consistent with emerging professional identity [24].

Closing activity: The session concludes with individual writing. Using sentence stems that prompt integration of learning with personal values, students draft brief ethical positioning statements. The instructor closes by reframing ethical competence: not as a state one achieves but as ongoing practice, a capacity that develops through continued engagement with difficult questions.

Homework: Students write a final reflection essay tracing how their reasoning has evolved across the module and articulate how they will approach future ethical dilemmas in their professional practice. The essay is submitted one week later.

4. Implementation Guidance

4.1. Generating Scenarios with AI: Practical Strategies

Effective scenario generation requires carefully designed prompts. Instructors can adapt the following template to their learning objectives and contexts.

Task: Generate a realistic ethical dilemma for interpreter education.

Context: Specify setting - medical/legal/conference - and approximate language pair if relevant.

Ethical focus: Select from confidentiality/transparency/responsibility/equity.

Stakeholders: Include at least three parties with competing interests (e.g., interpreter, client, institution, family member).

Length: 250-300 words.

Tone: Neutral presentation without obvious resolution.

Include:

- Specific situational details grounding the scenario in recognizable practice
- Institutional or regulatory context constraining options
- At least one point where codes offer ambiguous guidance
- Dialogue or interaction if it illuminates stakeholder perspectives

Avoid:

- Presenting one stakeholder as clearly villainous or irrational
- Resolving the dilemma within the scenario
- Technical jargon requiring specialized knowledge
- Cultural stereotypes or deficit framings

This template addresses common generation failures. Specifying "three parties with competing interests" reduces binary dilemmas with obvious resolutions. Requesting "dialogue" yields more vivid scenarios than descriptive prose. Explicitly instructing to "avoid cultural stereotypes" reduces but doesn't eliminate bias; thus, instructors must review critically.

Instructors should evaluate outputs against four quality criteria from case-based ethics pedagogy: (1) authenticity-recognizable professional contexts; (2) complexity-genuine tensions between defensible values; (3) completeness-stakeholders sufficiently characterized for perspective-taking; and (4) pedagogical focus-foregrounding the learning objective without extraneous complications [8]. Instructors should revise scenarios that fail to meet these criteria, commonly by adding institutional context, introducing sympathetic characters with opposing views, and removing distracting details. Maintain a scenario bank organized by domain, setting, and complexity, documenting which scenarios work well in particular contexts.

4.2. Facilitating Ethical Discussions

Ethical discussions generate pedagogical value through disagreement. Research on structured academic controversy shows well-facilitated disagreement enhances learning by requiring students to construct arguments, consider alternatives, and refine reasoning [19]. The facilitator's role is structuring controversy productively. First, make reasoning visible by requiring students to articulate not just conclusions but warrants: "Walk us through: what principle are you prioritizing, what assumptions underlie your thinking, and what consequences do you anticipate?" This signals that reasoning quality, not answer selection, matters [1]. Second, redistribute cognitive labor when discussions polarize by asking students to generate third options: "What would a middle path look like?" This prevents premature closure while modeling that dichotomous framings often oversimplify. Third, introduce complications strategically when consensus emerges too quickly: "How does that principle apply if the client is a minor or an institution?"

Instructors should resist providing definitive answers. They may correct factual errors and share experiences, but ethical judgment remains with students. Close discussions by naming unresolved tensions: "We've identified a genuine conflict our codes don't fully resolve. Part of your development involves learning to navigate such ambiguity [25]".

4.3. Assessment Approach

Assessment must evaluate reasoning processes rather than answer selection. The module employs three complementary components. Participation and facilitation (40%) assesses engagement quality using a three-level rubric with qualitative notes capturing exemplary contributions. Rather than rewarding frequency, the rubric specifies quality indicators: building on peers' ideas, asking questions advancing thinking, offering perspective shifts.

Applied analysis (30%), completed after Week 2, evaluates systematic framework application. The rubric assesses stakeholder identification, principle articulation, option generation, and justification quality-evaluating whether reasoning is explicit and grounded rather than privileging particular actions.

Reflective essay (30%) asks students to trace their ethical reasoning development, identify shifts in thinking, and articulate future approaches. This metacognitive task assesses professional identity formation. Delayed submission allows consolidation, recognizing development continues beyond formal instruction.

5. Reflection and Limitations

The module design carries important limitations. First, it lacks systematic empirical evaluation. While grounded in established pedagogical principles, effectiveness claims remain provisional. Future research should examine learning outcomes through assessment of reasoning quality and track graduates' early-career practice. Second, focusing on AI ethics may unintentionally reinforce technological determinism while obscuring fundamental issues of power and professional precarity [26]. Integrating non-AI scenarios alongside technology-focused dilemmas would provide an important balance. Third, successful implementation depends on instructors' capacity to curate scenarios critically and facilitate discussions productively-skills requiring professional development support. Fourth, the design presumes AI access and connectivity not universally available. Open-access scenario banks could address this limitation while reducing AI literacy development opportunities. Finally, the module emphasizes individual ethical reasoning over collective professional action. In reality, many dilemmas arise from institutional arrangements requiring collaborative responses, suggesting need for advocacy skill integration in future iterations.

6. Conclusion

This article has presented a four-week module using AI-generated scenarios to develop ethical reasoning competence in technology-mediated interpreting contexts. Integrating scenario-based learning, dialogic pedagogy, and critical AI literacy, the design cultivates situated judgment and ethical agency beyond rule memorization. This article also addresses a widely-acknowledged gap by providing detailed guidance-session structures, facilitation strategies, scenario generation principles, and assessment frameworks—that educators can adapt to local contexts. It demonstrates how AI can scaffold ethics education when critically framed, requiring students to work with and evaluate AI-generated content, developing dual competencies increasingly essential for interpreters: technical facility with AI tools and critical literacy about their limitations. Professional education's goal is not eliminating uncertainty but preparing practitioners who can think-in-action within it. In an era of rapid AI integration, such competence proves foundational to professional interpreting.

Funding: Supported by "the Fundamental Research Funds for the Central Universities". Zhongnan University of Economics and Law, Project Name: *The Impact of Translators' Intercultural Competence on Translation Quality in Interactive AI-Assisted Translation Driven by Large Language Models* (2722024BQ056).

References

1. M. Baker and C. Maier, "Ethics in interpreter & translator training: Critical perspectives," in *Ethics and the Curriculum*, pp. 1–14. London, U.K.: Routledge, 2014. ISBN: 9781905763269.
2. J. Drugan, and R. Tipton, "Translation, ethics and social responsibility," *The translator*, vol. 23, no. 2, pp. 119–125, 2017. doi: 10.1080/13556509.2017.1327008.
3. R. Tipton, "The Routledge guide to teaching ethics in translation and interpreting education," *Routledge*, 2024. ISBN: 9780367565770.
4. C. Fantinioli, "Interpreting and technology: The upcoming technological turn," in *Interpreting and Technology*, C. Fantinioli, Ed. Berlin, Germany: Language Science Press, 2018, pp. 1–12. ISBN: 9783961101627.
5. I. Horváth, "AI in interpreting: Ethical considerations," *Across Languages and Cultures*, vol. 23, no. 1, pp. 1-13, 2022. doi: 10.1556/084.2022.00108.
6. L. Ramírez-Polo, and C. Vargas-Sierra, "Translation technology and ethical competence: An analysis and proposal for translators' training," *Languages*, vol. 8, no. 2, p. 93, 2023. doi: 10.3390/languages8020093.
7. E. Kasneci *et al.*, "ChatGPT for good? On opportunities and challenges of large language models for education," *Learning and individual differences*, vol. 103, p. 102274, 2023. doi: 10.1016/j.lindif.2023.102274.
8. A. R. Jonsen, S. Toulmin, and S. E. Toulmin, "The abuse of casuistry: A history of moral reasoning," *Univ of California Press*, 1988. ISBN: 9780520060630.
9. J. Lave, and E. Wenger, "Situated learning: Legitimate peripheral participation," *Cambridge university press*, 1991. ISBN: 9780521423748.
10. D. A. Schön, "The reflective practitioner: How professionals think in action," *Routledge*, 2017. ISBN: 9781315237473.
11. J. S. Brown, A. Collins, and P. Duguid, "Situated cognition and the culture of learning," *Educational Researcher*, vol. 18, no. 1, pp. 32–42, 1989. doi: 10.2307/1176008.
12. C. V. Angelelli, "Medical interpreting and cross-cultural communication," *Cambridge University Press*, 2004. ISBN: 9780511227196.
13. M. Inghilleri, "Mediating zones of uncertainty: Interpreter agency, the interpreting habitus and political asylum adjudication," *The Translator*, vol. 11, no. 1, pp. 69–85, 2005. doi: 10.1080/13556509.2005.10799190.
14. R. Setton and A. Dawrant, *Conference Interpreting: A Complete Course*. Amsterdam/Philadelphia: John Benjamins Publishing Company, 2016. ISBN: 9789027258618.
15. Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, and P. Fung, "Survey of hallucination in natural language generation," *ACM computing surveys*, vol. 55, no. 12, pp. 1-38, 2023. doi: 10.1145/3571730
16. E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, "On the dangers of stochastic parrots: Can language models be too big?" In *Proceedings of the 2021 ACM conference on fairness, accountability, and transparency*, March, 2021, pp. 610-623. doi: 10.1145/3442188.3445922.
17. I. Kostka, and R. Toncelli, "Exploring applications of ChatGPT to English language teaching: Opportunities, challenges, and recommendations," *Tesl-Ej*, vol. 27, no. 3, p. n3, 2023. doi: 10.55593/ej.27107int.
18. D. Fisher, and N. Frey, "Better learning through structured teaching: A framework for the gradual release of responsibility," *ASCD*, 2021. ISBN: 9781416630616.

19. D. W. Johnson, and R. T. Johnson, "Energizing learning: The instructional power of conflict," *Educational researcher*, vol. 38, no. 1, pp. 37-51, 2009. doi: 10.3102/0013189x08330540.
20. U. Ozolins, "Descriptions of interpreting and their ethical consequences," *FITISPos International Journal*, vol. 1, pp. 23-41, 2014. doi: 10.37536/FITISPos-IJ.2014.1.0.9.
21. M. A. Burkhardt and A. Nathaniel, *Ethics and Issues in Contemporary Nursing*. New York, NY, USA: Delmar Cengage Learning, 2008, p. 560. ISBN: 9781401841960.
22. A. Matthias, "The responsibility gap: Ascribing responsibility for the actions of learning automata," *Ethics and information technology*, vol. 6, no. 3, pp. 175-183, 2004. doi: 10.1007/s10676-004-3422-1.
23. J. Danaher, "Tragic choices and the virtue of techno-responsibility gaps," *Philosophy & Technology*, vol. 35, no. 2, p. 26, 2022. doi: 10.1007/s13347-022-00519-1.
24. E. Wenger, "Communities of practice: Learning, meaning, and identity," *Cambridge university press*, 1999. ISBN: 9780521663632.
25. S. D. Brookfield, "The skillful teacher: On technique, trust, and responsiveness in the classroom," *John Wiley & Sons*, 2015. ISBN: 9781118450291.
26. J. Moorkens, "A tiny cog in a large machine" Digital Taylorism in the translation industry," *Translation Spaces*, vol. 9, no. 1, pp. 12-34, 2020. doi: 10.1075/ts.00019.moo.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.