Article

The Impact of Digital Intelligence on Vocational Secondary School Dance Courses on Students' Learning Motivation

Longzhu Luo 1,2,* and Hui Suan Wei 1

- ¹ City University Malaysia, Selangor Darul Ehsan, 46100, Malaysia
- ² Tian Jiabing Senior Vocational School, Meizhou, Guangdong, 514299, China
- * Correspondence: Longzhu Luo, City University Malaysia, Selangor Darul Ehsan, 46100, Malaysia; Tian Jiabing Senior Vocational School, Meizhou, Guangdong, 514299, China

Abstract: The rapid advancement of digital intelligence technologies has profoundly influenced educational practices, particularly within vocational secondary schools. This study investigates how the integration of digital intelligence affects student motivation in dance courses-a domain that remains underexplored in the educational technology literature. Drawing on empirical evidence from educational technology and motivation theories, the research employs a mixed-methods approach, including classroom observations and student interviews. Findings reveal that interactive digital technologies and adaptive learning systems enhance student engagement and sustain interest in the dance curriculum. The flexible nature of intelligent learning environments effectively accommodates diverse skill levels, fostering inclusive participation. Importantly, the study identifies best practices that maximize motivational benefits while minimizing potential technological barriers. These insights carry practical implications for educators seeking to modernize vocational arts education. Overall, this research contributes to the literature on balancing technical skill development and artistic creativity within digitally augmented learning environments, offering guidance for future curriculum designs that integrate technological innovation with artistic pedagogy.

Keywords: digital intelligence; vocational education; dance courses; learning motivation; secondary school

1. Introduction

The digitalization of information technologies in vocational education has emerged as a transformative trend, particularly in professional-oriented domains such as dance instruction. The adoption of adaptive learning platforms and immersive tools has reshaped teaching practices in vocational secondary schools, shifting the emphasis from purely technical skills toward a more balanced integration of artistry and professional training. This transition reflects a broader educational movement toward personalized, technology-enhanced learning that addresses the diverse needs of students.

Vocational dance training occupies a unique space at the intersection of artistic and professional education. Traditionally, instruction relied heavily on repetitive exercises and teacher-led explanations, approaches often insufficient for sustaining student motivation. Contemporary digital technologies-ranging from motion-capture feedback systems to AI-assisted choreography tools-offer new possibilities for enhancing skill acquisition while preserving creative expression. These technologies align with vocational students' preference for hands-on, interactive learning, enabling them to engage more deeply with the material while fostering artistic growth.

This study is motivated by two notable gaps in the existing literature. First, although extensive research has examined digital transformations in STEM-focused vocational education and training, less attention has been given to their application in performing arts.

Published: 16 October 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Second, dance pedagogy research has predominantly focused on higher education or preprofessional settings, leaving vocational students' motivations underexplored. This gap is particularly significant given the distinct learning characteristics of vocational students, who often exhibit strong kinesthetic learning tendencies and a preference for skill development through technology [1].

The primary objective of this research is to examine how digital intelligence toolssuch as interactive simulation platforms, real-time performance analytics, and adaptive learning modules-affect motivation in vocational dance courses. Secondary objectives include: (1) assessing the role of technological self-efficacy in mediating motivational gains; (2) comparing the long-term effectiveness of different digital tools for sustained engagement; and (3) identifying implementation challenges specific to resource-constrained vocational schools. These objectives are situated within the practical context of contemporary educational technology adoption, where institutional investments in digital infrastructure coexist with persistent disparities in access.

The study is grounded in classroom-based, applied use of technology rather than controlled experimental settings. This approach underscores the vocational relevance of the findings and emphasizes practical strategies that teachers can implement immediately, rather than theoretical or abstract contributions. The research focuses on vocational education settings in China, which have increasingly embraced digital solutions in recent years, providing fertile ground for investigating technology-induced motivational changes. Findings aim to offer actionable insights for educators navigating the dual challenge of preserving the humanistic and creative values of artistic pedagogy while leveraging the efficiency and engagement potential of digital tools.

Implicit in this investigation is the assumption that thoughtfully integrated digital intelligence can help reconcile the tension in vocational education between standardized skill acquisition and personalized creative innovation. By examining mature classroom applications rather than initial adoption, this study captures the longitudinal impact of technology on student motivation, providing practical knowledge to support ongoing curriculum development and pedagogical renewal in vocational performing arts education.

2. Theoretical Framework and Literature Review

2.1. The Concept and Components of Digital Intelligence in Education

Digital intelligence in education represents a paradigm shift in pedagogy, combining advanced technologies with personalized and adaptive learning ecosystems. In vocational dance education, digital intelligence manifests in three main components: interactive platforms and data-driven personalized learning, immersive technologies, and sophisticated learning analytics. Together, these components not only develop students' technical and artistic potential but also enhance motivation and engagement.

The first component is interactive digital platforms that enable bidirectional interaction between students and instructional content. These systems extend beyond passive video-based learning by incorporating interactive interfaces and integrating learners' physical movements, captured through motion sensors or cameras, to provide real-time visual and auditory feedback. Social learning features further allow students to collaborate with peers and instructors in virtual environments. Such engagement-driven elements align well with vocational learners' kinesthetic learning preferences. Real-time performance analytics embedded within these platforms offer objective feedback on skill development, fulfilling vocational students' need for tangible indicators of progress in creative domains [2].

The second component is data-driven personalization. Machine learning algorithms monitor individual learning trajectories and adjust instruction accordingly. Adaptive dance training systems modify content difficulty, recommend targeted exercises, and tailor feedback based on learners' evolving technical skills and artistic interpretation. This

individualized approach mitigates the frustration often caused by one-size-fits-all instruction and enhances students' self-efficacy-a key driver of intrinsic motivation. Predictive analytics further enable early detection of declining engagement, allowing timely pedagogical interventions.

The third component is immersive technologies, where extended reality (XR) transforms spatial and temporal constraints in dance education. Virtual reality (VR) enables students to rehearse in digitally reconstructed studio environments, while augmented reality (AR) overlays provide live posture guidance during independent practice. These technologies bridge studio training with stage performance, preparing students for professional careers. Gamified elements, such as progress badges and virtual audience simulations, engage students' competitive instincts and provide concrete recognition of achievements.

Beneath these components lies a sophisticated learning analytics infrastructure that converts raw interaction data into actionable pedagogical insights. Machine learning models integrate multimodal data-including movement precision metrics, practice frequency, and emotional-state markers-into comprehensive learner profiles. These profiles inform both system adaptations and evidence-based teaching decisions, generating a synergy in which digital tools support skill acquisition while preserving artistic expression.

The operationalization of digital intelligence in dance pedagogy reflects broader educational technology trends, with modifications tailored to the performing arts. Unlike STEM vocational training, which emphasizes procedural knowledge, dance education balances technical accuracy and creative expression [3]. Hybrid interfaces provide dual feedback-quantitative metrics for biomechanical precision and qualitative evaluation for artistry-driving motivation by affirming both technical and creative progress.

In deployment, these technologies follow human-centered design principles to ensure usability for non-technical users. Iterative refinement has produced intuitive dashboards that make complex analytics visually accessible to students and instructors alike. This approach accommodates the diverse technological literacy of vocational educators while maximizing the motivational impact of digital resources. As these systems evolve, they are reshaping dance education, moving beyond traditional support to fundamentally transforming teaching and learning practices.

2.2. Current Research on Learning Motivation in Vocational Secondary School Dance Education

Research on motivation in vocational secondary school dance education reveals a complex interplay between teaching approaches, student characteristics, and technological integration. The unique nature of vocational training-where technical skills intersect with artistic expression-has led scholars to examine motivation through multiple theoretical lenses, providing a useful framework for discussing digital competence.

Vocational dance students generally display a stronger inclination toward applied skills and professional preparation compared to academically focused peers. Three key motivational drivers consistently emerge: the desire to develop solid technical skills, the pursuit of self-expression and creativity, and the relevance of training to career prospects. While competency-based learning aligns well with vocational students' goals, overly abstract artistic components may reduce engagement. Digital tools have proven effective in addressing this tension, offering concrete indicators of skill development while still fostering creative exploration.

Digital learning environments have also transformed traditional conceptions of motivation in vocational dance. Digitally mediated feedback resolves long-standing challenges in performance assessment, where students historically struggled to evaluate their progress objectively. Motion-capture systems and AI-driven analytics now provide immediate, accurate feedback on biomechanical precision, satisfying students' need for

measurable progress. Importantly, these systems also capture artistic dimensions, including emotional expression and stylistic fidelity, reflecting the dual priorities of vocational learners: technical validation and creative affirmation [4].

Social motivation is another critical focus. Digital technologies facilitate peer interaction through virtual rehearsal spaces and collaborative review functions, enhancing collective learning. Online communities can provide supportive, low-pressure opportunities for engagement, allowing less confident students to participate at their own pace while contributing to shared creative endeavors.

Sustaining motivation over time depends on thoughtful instructional design. While initial exposure to new technologies can generate spikes in engagement, long-term interest requires strategies such as progressive challenge scaling, periodic introduction of novel features, and explicit relevance to professional contexts. Such design principles prevent the typical "honeymoon effect," where initial excitement wanes as familiarity with the tools increases.

The role of teachers in digitally enhanced dance education has also evolved. Technology automates repetitive skill drills, freeing instructors to focus on mentorship, tailored guidance, and career development. This shift enhances the student-teacher relationship, allowing educators to concentrate on motivation-sustaining aspects of instruction rather than routine corrections.

Research further highlights the intersection of digital literacy and motivation. When digital tools are designed to be accessible, aesthetically coherent, and physiologically grounded, they enhance students' self-efficacy and engagement. Simplified interfaces, gesture-based controls, and visually intuitive analytics foster alignment between technological interaction and embodied artistic practice.

Despite these advances, notable gaps remain. Few longitudinal studies track vocational dance students' motivational trajectories across multiple years of digital curriculum implementation. Additionally, research has scarcely examined motivations arising from extracurricular digital engagement, such as online dance communities or competition platforms.

Overall, current findings suggest that digital intelligence holds significant potential to address longstanding motivational challenges in vocational dance education by supporting personalized learning, providing objective performance measures, and linking training to professional relevance. However, scholars caution against technological determinism; the most effective outcomes occur when digital tools complement pedagogical goals rather than dictate them, creating a balanced environment where precision and artistry reinforce one another.

3. Research Methodology and Data Analysis

3.1. Research Design and Data Collection Methods

This study employs a mixed-methods approach to investigate the effects of digital intelligence integration on learning motivation in vocational secondary school dance classes. By combining quantitative measures of engagement with qualitative insights into students' experiences, the research allows for triangulation of findings across multiple data sources. This approach captures both observable behavioral changes and latent shifts in motivational patterns [5].

The study follows a quasi-experimental design comparing three vocational schools that differ in their levels of digital intelligence integration. School A has fully implemented digital tools, including VR simulations and AI-driven feedback systems. School B is in transition, introducing blended learning platforms, while School C continues traditional instruction without technological enhancements, serving as a control. This design enables analysis of motivational differences across technology adoption levels while controlling for institutional context.

Data collection occurs through three integrated channels. Classroom observations document behavioral engagement, including participation frequency, time on task, and voluntary practice. Standardized rubrics ensure consistency, and inter-rater reliability is established through double-coding procedures. Digital platforms provide additional objective data, such as system access frequency, module completion rates, and tool usage patterns, complementing observational measures.

To capture subjective motivational dimensions, modified versions of validated motivation scales are administered at key stages, assessing intrinsic interest, perceived competence, and task value in the context of dance education. Stimulus-response interviews further probe students' motivational dynamics by presenting them with traces of their digital learning analytics and eliciting reflections on fluctuations in engagement. This method links quantitative performance data with qualitative insights into learners' interpretations of technology-mediated feedback.

Focus group interviews explore social aspects of motivation, including peer comparison and collaboration through shared digital portfolios, as well as challenges in sustaining engagement with technology. Parallel semi-structured interviews with teachers examine pedagogical adaptations required to integrate digital tools, such as changes in motivational strategies and classroom management approaches.

The study employs a longitudinal design across an academic year, with motivation measured at three phases: initial exposure to technology (Phase 1), adaptation of use (Phase 2), and mature integration into the curriculum (Phase 3). This design distinguishes between novelty effects and sustained pedagogical impact. Digital ethnography supplements traditional methods by examining organic student interactions within learning management systems, such as discussion forum participation and peer feedback exchanges.

All data collection occurs in authentic educational settings, ensuring ecological validity. Digital tools are integrated into the curriculum rather than used solely for experimental purposes. Contextual variables, including class schedules, instructor backgrounds, and institutional resources, are documented to control for potential confounders.

Ethical considerations are rigorously addressed. Participant confidentiality is maintained in digital contexts, and measures are taken to minimize performance anxiety when using technology. Informed consent is obtained from all participants, and safeguards are in place to prevent dependency on digital tools; control group students receive equivalent learning opportunities through alternative methods following the intervention.

Data analysis involves careful preprocessing and coding. Quantitative data are checked for missing or outlying values, while qualitative data are transcribed, anonymized, and analyzed thematically. A structured coding scheme integrates behavioral metrics with motivational constructs, allowing for comprehensive interpretation of how digital affordances translate into motivational outcomes. This rigorous methodology provides a robust framework for examining the multidimensional impact of digital intelligence on vocational dance students' learning motivation.

3.2. Analysis and Interpretation of Findings

Analysis of the collected data reveals clear trends regarding the influence of digital intelligence tools on vocational dance students' learning motivation. Teacher-reported classroom observations indicate that students in technology-rich settings (Schools A and B) demonstrate higher engagement than those in technology-limited environments (School C). Specifically, the combination of VR simulations and AI feedback systems correlates with greater voluntary practice and increased persistence on tasks. Log data from digital platforms corroborates these findings, showing frequent system access and consistent module completion among students using advanced learning technologies.

Qualitative data provides deeper insight into the motivational dynamics underlying these behavioral changes. Students report that timely feedback from digital tools satisfies

core psychological needs, enhancing intrinsic motivation. Many participants express increased perceived competence as AI-generated biomechanical corrections clarify areas for improvement. One student noted, "Being able to watch exactly where I'm corrected on my posture [through VR replay] makes it feel possible to get better." These interventions strengthen the link between effort and visible progress, sustaining motivation over time.

Comparisons across implementation stages reveal adoption dynamics. Students in School B initially exhibit reluctance but gradually show increased intrinsic motivation, reflecting adaptation to the new tools. In contrast, School A, with a mature digital environment, demonstrates stable, high levels of motivation, suggesting that prolonged exposure can internalize technology-mediated learning practices. Motivation in the control group remains largely unchanged, with only minor fluctuations under traditional teaching methods.

Thematic analysis of focus group discussions highlights social-motivational factors specific to digital learning. Students report that shared digital portfolios and peer comparison features are generally motivating, although responses vary by gender; some male students feel intimidated, while most female students find these features supportive. These findings suggest that user control over social visibility is important in educational technology design.

Teacher interviews reveal pedagogical adaptations that mediate motivational effects. Effective instructors balance digital feedback with human guidance. One teacher explained, "The AI catches technical errors, but I focus on connecting those corrections to artistic expression." This integration supports both skill development and creative fulfillment. Less successful implementations occur when digital tools are treated as substitutes for, rather than enhancements to, traditional instruction.

Longitudinal analysis shows consistently high motivation in School A, indicating that novelty effects are complemented by sustained engagement. Temporary drops in participation are linked to technical issues, emphasizing the need for reliable infrastructure. In the maturity phase, students exhibit increasing self-regulated learning behaviors, suggesting long-term benefits for learner autonomy.

Digital ethnography reveals that students active in online dance communities maintain more consistent engagement than isolated learners, regardless of initial motivation. This "networked motivation" may amplify the effectiveness of digital tools and warrants further exploration.

Overall, findings suggest that digital intelligence can enhance motivation through multiple pathways: increasing visibility of skill mastery, enabling individualized challenges, supporting social learning, and fostering creative experimentation. However, potential pitfalls exist, such as misuse of embedded features or technical disruptions, which can undermine engagement.

Expectancy-value theory provides a useful lens for interpreting these patterns. Digital tools appear to increase students' confidence in their ability to succeed while highlighting the value of tasks, creating a resilient motivational foundation that extends beyond initial exposure. Adaptive difficulty mechanisms maintain optimal challenge levels, mitigating both frustration and boredom-two major obstacles to motivation in traditional dance classes.

Contrary to concerns that technology may diminish human connection, well-designed digital tools enhance teacher-student relationships. Analytics dashboards allow instructors to identify struggling students early and provide routine automated feedback, freeing time for artistic guidance. Teachers also report that access to detailed performance data enables more personalized encouragement, which students consistently find highly motivating.

The study identifies three critical conditions for improving motivation through digital intelligence in dance education: (1) balanced integration that preserves essential human aspects of dance pedagogy, (2) sufficient support for adoption among both students and teachers, and (3) deliberate design of social-interactive features that promote healthy

peer dynamics rather than unhealthy competition. These insights have direct implications for vocational schools seeking to modernize performing arts curricula while maintaining high levels of student engagement.

4. Conclusion and Recommendations

This study demonstrates that digital intelligence technologies play a transformative role in vocational secondary school dance education, particularly in enhancing students' learning motivation. Interactive digital tools and adaptive learning platforms make dance instruction more engaging, personalized, and accessible for learners of varying skill levels, supporting sustained participation over time. The findings validate the premise that thoughtfully integrating technology into learning practices can simultaneously promote technical competence and preserve creative freedom in vocational education.

Several key implications emerge from the analysis. First, digital intelligence provides multiple sources of motivation by making skill development visible, enabling individualized challenges, and fostering opportunities for creative experimentation. The adaptable nature of these technologies helps maintain optimal challenge levels, preventing both frustration and boredom common in traditional dance instruction. Second, the research challenges concerns that technology diminishes human connection, showing that well-designed tools can enhance teacher-student relationships when used to supplement, rather than replace, human instruction. Third, social learning functionalities significantly influence motivation, though patterns of engagement may differ by gender, highlighting the need for customizable design options.

Based on these findings, three critical considerations for vocational dance schools emerge regarding the integration of digital intelligence into curricula. First, comprehensive teacher training is essential to promote balanced use of technology alongside traditional pedagogical methods. Educators benefit from guidance on combining digital feedback with artistic instruction, as this approach was found to be most effective in sustaining motivation. Second, schools should prioritize reliable technological infrastructure and equitable access to devices, as technical issues and resource limitations were identified as major obstacles to long-term engagement. Third, system developers should implement adjustable social features that allow students to control their visibility and participation in peer comparison activities, along with customizable feedback options to accommodate diverse comfort levels and learning styles. Instructors should also be equipped with robust analytics dashboards to quickly identify students who may need additional support, enabling timely artistic guidance.

For future curriculum design, an incremental implementation strategy is recommended. Early stages should focus on developing technological literacy, gradually introducing more advanced features. Regular feedback on motivational outcomes should guide ongoing adjustments. The study also highlights the potential of "networked motivation" through online dance communities as a means of sustaining engagement over time.

Sustaining long-term success requires careful planning for contingencies, such as internet failures, which may disrupt learning and motivation. Professional development programs should support the transition from traditional to technology-enhanced learning while preserving the expressive and creative dimensions of dance. Additionally, future research should explore the longitudinal impact of digital intelligence on artistic development, as this study primarily examined motivational outcomes.

Overall, these guidelines offer a practical model for modernizing vocational dance education while retaining its creative and expressive core. By selectively applying digital intelligence technologies in alignment with pedagogical balance, technical reliability, and individualized learning needs, institutions can design dance programs that effectively motivate students and prepare them for evolving artistic and technological landscapes.

Future studies may also investigate the applicability of these findings to other performing arts disciplines within vocational education.

Reference

- 1. Y. Wang, Z. Gao, W. Wu, Y. Xiong, J. Luo, Q. Sun, and Z. L. Wang, "TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence," *Nano-Micro Letters*, vol. 17, no. 1, p. 265, 2025. doi: 10.1007/s40820-025-01778-1
- 2. A. Huddy, "Digital technology in the tertiary dance technique studio: expanding student engagement through collaborative and co-creative experiences," *Research in Dance Education*, vol. 18, no. 2, pp. 174-189, 2017. doi: 10.1080/14647893.2017.1330327
- 3. O. Lobova, O. Ustymenko-Kosorich, O. Zavialova, and O. Stakhevych, "Professional performance and methodological training of future musical art teachers: A theoretical approach," *Journal of History Culture and Art Research*, vol. 9, no. 4, p. 37, 2020. doi: 10.7596/taksad.v9i4.2822
- 4. K. Kukhar, and N. Bilous, "Factors Affecting Motivation in Learning Classical Dance: An Empirical Study," 2023.
- 5. Y. Peng, "Research on dance teaching based on motion capture system," *Mathematical Problems in Engineering*, vol. 2022, no. 1, p. 1455849, 2022.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.