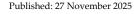
Article


Artificial Intelligence and Teacher Professional Development: A Qualitative Study of Ideological and Political Theory Teachers in Private Universities

Jiewen Chen 1, Xiaoyan Pan 1 and You Chen 1,*

- College of Foreign Studies, Guangdong University of Science and Technology, Dongguan, Guangdong, 523083, China
- * Correspondence: You Chen, College of Foreign Studies, Guangdong University of Science and Technology, Dongguan, Guangdong, 523083, China

Abstract: This study examines how Ideological and Political Theory (IPT) teachers in private universities experience, interpret, and respond to AI-driven transformations affecting their teaching practices, research activities, and career development trajectories. Employing a qualitative research design, semi-structured interviews were conducted with eight IPT teachers representing four academic ranks-teaching assistants, lecturers, associate professors, and professors-across Guangdong Province. Thematic analysis, facilitated by NVivo software, revealed three prominent patterns. First, AI-driven reconstruction of teacher competencies emerged as a critical challenge, with 75% of participants reporting insufficient preparedness in digital literacy, AIGC proficiency, and ethical decision-making. Second, teacher roles and career trajectories are undergoing substantial transformation, as educators shift from traditional knowledge transmission toward becoming facilitators of student learning, ideological evaluators, and guides in navigating AIaugmented educational environments. Third, the institutional ecology significantly shapes teachers' adaptive capacities, with widespread concerns about fragmented professional training, inadequate technical support, and misaligned incentive structures that hinder sustainable adaptation. The findings underscore the urgent need for comprehensive, rank-sensitive, and ethically grounded professional development systems that integrate technological competence with ideological discernment. By highlighting key institutional barriers and opportunities for AI integration, this study contributes nuanced insights into the evolving experiences of IPT teachers in private higher education institutions. It further informs the development of sustainable, value-oriented AI practices that support educators in maintaining pedagogical effectiveness, ethical integrity, and career resilience amidst rapid technological change.

Keywords: artificial intelligence (AI); Artificial Intelligence Generated Content (AIGC); teacher professional development; Ideological and Political Theory (IPT) Education; private universities

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The rapid expansion of artificial intelligence (AI), particularly Artificial Intelligence Generated Content (AIGC) tools such as ChatGPT, Kimi, Claude, and DeepSeek, is reshaping higher education globally. AI is increasingly employed in instructional design, content generation, learning analytics, assessment, and institutional decision-making, offering the potential to enhance teaching efficiency, broaden access to knowledge, and support personalized learning pathways. International organizations, including UNESCO, OECD, and the World Economic Forum, underscore AI's transformative potential for education, yet scholars also caution that it introduces challenges related to academic integrity, algorithmic bias, misinformation, and the erosion of teacher autonomy. These tensions are especially pronounced in Ideological and Political Theory (IPT) education in

China, where the cultivation of political identity, civic literacy, and ethical reasoning is central to the curriculum [1].

Although China's Ministry of Education emphasizes strengthening IPT teacher professionalism in the digital era, little is known about how IPT teachers-particularly those in resource-constrained private universities-experience and adapt to AI-driven changes. Private institutions often face limitations in funding, digital infrastructure, research support, and professional development opportunities, which affect their capacity to adopt AI technologies and shape teachers' career trajectories. For IPT teachers in such contexts, AI functions both as an enabling pedagogical tool and a potential source of vulnerability, offering access to rich teaching resources while raising concerns about ideological appropriateness, ethical integrity, and the preservation of value-guiding responsibilities.

Existing research on AI literacy and digital pedagogy tends to overlook IPT teachers' lived experiences, identity negotiations, and institutional challenges. Few studies have investigated rank-specific differences among teachers or focused on the unique conditions of private universities, where professional support systems and technical infrastructures differ substantially from public institutions. Addressing these gaps, the present study explores how IPT teachers across four academic ranks perceive and utilize AI, how AI reshapes their competencies and professional roles, and how institutional conditions facilitate or constrain adaptation. Through in-depth qualitative interviews with eight IPT teachers, this research provides a contextually grounded understanding of AI's impact, highlighting the interplay between technological competence, value discernment, pedagogical innovation, and institutional support in shaping sustainable and ethically responsible AI integration in higher education.

2. Literature Review

2.1. AI and the Transformation of Higher Education

The rapid advancement of artificial intelligence (AI) has profoundly reshaped global higher education, with scholars increasingly recognizing AI as both a technological disruptor and a pedagogical catalyst. International research emphasizes AI's potential to enhance instructional efficiency, personalize learning experiences, and improve assessment practices [2,3]. Artificial Intelligence Generated Content (AIGC) tools, including ChatGPT, Claude, Kimi, and DeepSeek, now enable educators to generate explanations, lesson plans, feedback, case studies, and multimodal instructional materials. UNESCO (2024) highlights that AI can foster inclusive, student-centered learning environments by providing adaptive content and real-time learning analytics [4]. Likewise, the European Commission (2023) argues that well-designed AI systems can reduce administrative burdens for teachers, thereby allowing greater focus on value-rich pedagogical activities such as mentoring and reflective teaching [5].

However, scholars also caution that AI is not inherently beneficial. Potential risks include misinformation, algorithmic bias, data privacy issues, threats to academic integrity, and the deskilling of teachers [6]. AI-generated content may carry epistemic risks, undermine teacher authority, or perpetuate structural inequalities if applied uncritically [7]. Moreover, the increasing sophistication of AI requires a reconsideration of pedagogical roles, urging teachers to evolve from traditional information transmitters into designers of learning experiences and ethical gatekeepers [8]. Collectively, this literature indicates that AI adoption demands new teacher competencies, evolving professional identities, and awareness of emergent risks, forming the broader contextual backdrop of the present study.

2.2. AI Literacy, Teacher Competencies, and Professional Development

Recent scholarship increasingly focuses on the competencies teachers require in the AI era, with AI literacy emerging as a central concept encompassing technological

proficiency, data literacy, algorithmic thinking, and the ability to critically interpret Algenerated outputs [9]. In educational contexts, AI literacy further entails understanding how AI systems influence learning processes, assessment practices, and institutional decision-making, implying that teachers must integrate technical skills with pedagogical and ethical judgment [10].

International studies identify several essential competencies for AI-integrated teaching: integrating AI tools into instructional design, evaluating the accuracy and ethical implications of AI-generated content, using data to inform assessment and feedback, and recognizing AI's pedagogical affordances and limitations [11]. Chinese scholarship similarly emphasizes that teachers should enhance digital pedagogical competence, develop AIGC-supported instructional strategies, and strengthen value-oriented judgment to maintain ideological and ethical integrity in classrooms [12]. AI offers enriched instructional resources, but teachers must exercise creativity and critical evaluation to filter and adapt content effectively [13]. Furthermore, AI accelerates the transition toward a "teacher as facilitator" model, balancing humanistic values with technological innovation [14]. Despite these insights, research has insufficiently examined teachers' lived experiences of competency pressures, particularly in ideologically sensitive fields like IPT, or how such pressures differ across career stages.

2.3. AI and the Changing Role of Teachers

A growing body of literature demonstrates that AI is transforming teachers' roles, identities, and work patterns. Scholars argue that AI shifts teachers from being traditional knowledge transmitters to becoming learning designers and facilitators who curate, evaluate, and contextualize AI-generated content [15]. Teachers are increasingly expected to co-orchestrate learning, mediating interactions between human and machine inputs in alignment with constructivist, learner-centered pedagogies [16].

Yet, this shift also introduces challenges. AI may threaten professional identity by encroaching upon teachers' domain expertise and contributing to "role compression," wherein educators shoulder growing demands for value guidance, emotional support, and ethical judgment while routine tasks are automated. This intensification of emotional and cognitive labor can increase stress and burnout. In the Chinese context, AI poses distinct implications for IPT education, as teachers must safeguard ideological accuracy and maintain value guidance, even while leveraging AI tools for instructional support. Despite these concerns, few empirical studies explore how IPT teachers negotiate identity shifts, particularly in private universities, where high teaching loads and limited institutional support exacerbate the challenges of AI integration [17].

2.4. Institutional Ecology, Digital Transformation, and Private Higher Education

Teachers' capacity to adapt to AI is strongly influenced by institutional ecosystems. Effective digital transformation requires coherent support systems, including structured training, infrastructure, technical assistance, workload policies, and incentive mechanisms. Without these elements, AI adoption may remain superficial, preventing meaningful integration into teaching practice [18].

In China, institutional disparities between public and private universities are pronounced. Private universities often face budget constraints, limited research opportunities, and weaker professional development infrastructures. These limitations affect access to smart classrooms, digital platforms, and strategic AI integration planning, further compounded by fragmented training, limited technical support, and evaluation systems that inadequately reward digital and pedagogical innovation. For IPT teachers, institutional ecology is particularly critical, as their work involves ideologically sensitive content requiring oversight, content review, and normative guidance. Yet empirical research examining how institutional conditions influence AI adaptation among IPT teachers in private universities remains scarce.

2.5. Gaps in Existing Research

Despite extensive research on AI in education, critical gaps remain. First, studies rarely focus on IPT teachers, whose responsibilities for ideological and ethical guidance render AI-related risks more complex. Second, little is known about AI's impact on teacher development in private universities, where resource limitations and fragmented support structures contrast sharply with well-resourced environments assumed in much of the literature. Third, rank-specific experiences are seldom examined, neglecting the distinct pressures faced by teaching assistants, lecturers, associate professors, and professors. Fourth, research remains largely technology- or policy-focused, with few qualitative studies exploring teachers' lived experiences, identity negotiations, and emotional responses. These gaps underscore the need for focused, qualitative inquiry into how IPT teachers in private higher education perceive and navigate professional challenges posed by AI.

3. Methodology

3.1. Research Design

This study adopted a qualitative research design using semi-structured, in-depth interviews to investigate how AI is reshaping the professional development pathways of IPT teachers in private universities. Given that AI is rapidly transforming pedagogical models, competency structures, and institutional expectations, a qualitative approach provides the most suitable means to capture teachers' subjective perceptions, developmental needs, and everyday teaching realities. Semi-structured interviews were chosen because they balance structure with flexibility, enabling the researcher to explore comparable issues across participants while also probing unique experiences grounded in individual teaching contexts.

3.2. Participants and Sampling

Participants were selected through purposive sampling combined with maximum variation sampling to ensure heterogeneity across professional rank, gender, age, and years of teaching experience. Eight teachers from four private universities in Guangdong Province participated in the study, including two teaching assistants, two lecturers, two associate professors, and two professors, with males and females equally represented at each rank (see Table 1). Their teaching experience ranged from two to twenty-eight years, ensuring that both early-career and senior educators were included. This sampling strategy allowed the study to capture a broad spectrum of perspectives on AI adoption, digital competency pressures, shifts in teacher roles, and institutional support mechanisms.

Table 1. Demographic Profile of Eight Interview Participants.

Participant ID	Gender	Age	Academic Rank	Years of Teaching Experience	Weekly Teaching Hours
P1	Female	28	Teaching Assistant	2 years	≈10 hours
P2	Male	30	Teaching Assistant	3 years	≈12 hours
Р3	Female	33	Lecturer	7 years	≈14 hours
P4	Male	35	Lecturer	8 years	≈16 hours
P5	Female	40	Associate Professor	15 years	≈12 hours
P6	Male	42	Associate Professor	18 years	≈10 hours
P7	Female	48	Professor	25 years	≈8 hours
P8	Male	50	Professor	28 years	≈6 hours

3.3. Data Collection

Data collection occurred between June and September 2025. Interviews were conducted face-to-face or through encrypted video conferencing, depending on participants' availability and preference. Each interview lasted between 40 and 55 minutes. All interviews followed a pre-designed protocol that covered five major dimensions: 1) basic background information; 2) teachers' actual use of AI tools in teaching and research; 3) perceived competency requirements in the AI era; 4) the influence of AI on teacher roles, responsibilities, and career development; and 5) institutional policies, support systems, and expectations. Although the same interview guide was used for all participants, follow-up questions were adapted according to academic rank. For example, teaching assistants were further asked about digital competency pressures for promotion, lecturers about the intensification of pedagogical innovation expectations, associate professors about AI-related research shifts, and professors about long-term professional positioning in the AI era. With participants' consent, all interviews were audio-recorded and transcribed verbatim in Chinese. The transcripts, along with field notes capturing non-verbal cues and contextual observations, formed the primary dataset for analysis.

3.4. Data Analysis

The study used thematic analysis supported by NVivo 14 to organize and interpret the data. Analysis proceeded through three stages. During open coding, transcripts were read line-by-line to extract initial concepts related to AI usage patterns, beliefs about AI-driven transformation, perceived benefits and challenges, competency needs, emotional responses, and institutional constraints. More than one hundred initial codes were generated. In the axial coding stage, these codes were grouped into larger thematic categories, such as "AI-assisted pedagogical transformation," "professional identity adjustment," "competency restructuring," "institutional support and constraints," and "value-oriented concerns in AI adoption." Finally, selective coding integrated these categories into a conceptual model describing how IPT teachers in private universities navigate new competency expectations, role shifts, and institutional environments in the context of AI. Three overarching themes emerged from this process: 1) the reconstruction of teacher capabilities; 2) the transformation of professional roles; and 3) the shaping influence of the institutional ecology surrounding teacher development.

4. Findings

4.1. AI-Driven Capability Reconstruction

The first major finding reveals that artificial intelligence has reshaped the competency demands for IPT teachers across all academic ranks. All eight participants (100%) acknowledged that AI requires teachers to develop new forms of digital literacy, AIGC tool proficiency, and data-informed instructional design, although 75% of them admitted they currently feel inadequately prepared. Early-career teachers expressed the strongest sense of insufficiency. As P1 remarked, "AI helps me generate outlines quickly, but I always worry that I'm not building my own analytical ability," while P2 echoed this concern by noting, "Promotion now seems tied to digital skills, but I still don't fully understand the technology." Lecturers also described AI as heightening pressure for innovation, with P4 stating, "Students immediately know when your content is outdated. AI raised their expectations and raised my pressure." Associate professors observed that AI was transforming the nature of their research work, leading P6 to comment that "AI changed my research direction. I now work more on AI ethics and digital governance." In contrast, professors focused more on value-oriented competencies, arguing that ideological judgment outweighs technical skill. As P7 explained, "The key is not using AI, but evaluating AI. We must know what is correct, what is biased, and what aligns with Marxist values." Furthermore, 87.5% of participants emphasized that AI increases the demand for creativity and integrative course design, because AI-generated materials

require teachers to filter, adapt, and contextualize them. P3 summarized this clearly, saying, "AI gives me dozens of case studies in seconds, but I need to filter, rewrite, and integrate them. The more AI can do, the more creative we must be." Ethical awareness also emerged as a crucial competency, with half of the participants-particularly senior teachers-warning about the ideological risks of uncritical AI use. P5 emphasized this by asserting, "AI materials often lack value orientation. This is dangerous in IPT teaching."

4.2. Transformation of Teacher Roles and Career Trajectories

The second major finding concerns profound changes in teachers' professional identities and career pathways. All eight teachers (100%) agreed that AI is shifting their roles from content transmitters to learning facilitators, but 75% highlighted uncertainty and adjustment pressures associated with this change. As P8 observed, "Information is everywhere now. My job is no longer to tell students what is correct, but to guide them to think critically with correct political direction." Early-career teachers described this role shift as particularly demanding. P1 reflected that "I used to focus on understanding the textbook. Now I have to design interactive activities that AI cannot replace," illustrating how AI raises expectations for personalized and creative pedagogy. Regarding workload, every participant recognized that AI accelerates the initial stages of lesson planning; however, 62.5% argued that verifying, contextualizing, and rewriting AI-generated content ultimately increases their total workload. P4 captured this paradox: "AI reduces the first half of the work, but the second half-checking accuracy, rewriting content, adapting cases-takes longer." Career-related perceptions also varied by rank. Teaching assistants reported the highest anxiety, believing digital competency has become an implicit criterion for promotion. Lecturers viewed AI as both a pressure and an opportunity, with P3 noting that "AI pushes me to be more innovative, and innovation is now tied to awards and evaluation." Associate professors saw AI as expanding interdisciplinary research opportunities, while professors believed AI reaffirmed the value-guiding function of teachers. As P7 asserted, "AI will never replace ideological educators. But it will expose those who cannot adapt."

4.3. Institutional Ecology as the Determining Factor

The third finding highlights that teachers' ability to adapt to AI is heavily dependent on institutional support systems within private universities. While 62.5% of participants acknowledged the existence of basic smart classrooms and occasional AI workshops, these measures were widely criticized as superficial and fragmented. As P3 explained, "The workshops are too general... they tell us what AI can do, but not how to use it in real teaching." Three major institutional shortcomings emerged across interviews. First, 75% of teachers identified the lack of systematic, rank-specific AI training as a core barrier. P1 described existing sessions as "showing tools without teaching application." Second, 62.5% highlighted insufficient technical support. As P4 noted, "We are given tools but not guidance. I often feel like I'm experimenting alone." Third, 50% of participants emphasized weak incentive structures that fail to reward AI-based teaching innovation. P5 commented, "AI teaching innovation does not count much in evaluation. Without incentives, teachers are not motivated." Despite these challenges, 87.5% of teachers articulated clear expectations for an ideal AI-era development system, proposing structured digital literacy pathways, AI-integrated course development support, crossinstitutional learning communities, institution-enterprise partnerships, strong technical support teams, and performance-linked incentives. P8 summarized these aspirations succinctly: "We need a system, not a slogan. Training, resources, evaluation, and incentives must work together."

5. Discussion

5.1. Reinterpreting AI-Driven Competency Demands Through Contemporary Teacher Professional Development Theory

The findings of this study demonstrate that artificial intelligence (AI) is reshaping the competency structure of IPT teachers in private universities in ways consistent with global trends in teacher development. Similar to international research emphasizing the "new literacies" of AI-era teachers-such as digital literacy, data literacy, and AI ethics awareness all eight participants in this study recognized that AI has fundamentally altered what it means to be professionally competent. The near-universal admission of insufficient AI competency among participants (75%) reinforces the view that technology-related competence has become a new threshold requirement rather than an optional enhancement.

However, this study extends existing literature by demonstrating that AI-driven competency demands are rank-differentiated in private university contexts. Early-career teachers perceived AI proficiency as a prerequisite for promotion, whereas senior professors emphasized value-oriented and ideological judgment rather than technical mastery. This confirms the argument that teacher professional development is socially and institutionally situated rather than uniform]. The findings illustrate that AI does not merely require teachers to learn new tools; it reconfigures the meaning of teacher expertise, shifting emphasis from content delivery to interpretive, evaluative, and ethical capacities-especially salient in IPT, where political values and ideological accuracy are central to curricular goals.

5.2. AI as a Catalyst for Role Transformation and Identity Negotiation

The discussions around role change reveal that teachers are undergoing significant professional identity negotiation. Consistent with the "teacher as facilitator" model in AI-supported education (UNESCO, 2024), participants reported moving away from being knowledge transmitters toward roles such as learning designers, value guides, and evaluators of AI-generated content. Yet the findings show that this transformation is not uniform: early-career teachers experienced the shift as demanding and destabilizing, while senior professors viewed it as an opportunity to reaffirm their role in value-oriented guidance.

This contrast highlights a key theoretical contribution: AI accelerates the decentering of teacher authority while simultaneously intensifying the need for value leadership in ideologically sensitive disciplines. This paradox reflects emerging literature arguing that AI weakens teachers' informational authority while enhancing the importance of their moral and pedagogical authority (OECD, 2023). The finding that 62.5% of teachers experienced an overall increase in workload despite using time-saving AI tools further underscores that AI does not reduce teaching labor; it redistributes it toward more complex interpretive and supervisory tasks.

Furthermore, teachers' mixed emotions-ranging from excitement about innovation to anxiety about evaluation and promotion-align with research showing that technological change can create both professional empowerment and vulnerability. The study adds nuance by showing that these emotions differ systematically by academic rank, providing important implications for designing differentiated professional development pathways.

5.3. Institutional Ecology as the Key Determinant of AI Adaptation in Private Universities

One of the clearest findings of this research is that private universities' institutional ecology-policies, incentives, resources, training systems-is the dominant factor shaping teachers' ability to adapt to AI. While participants appreciated having basic smart classrooms or occasional workshops, all teachers agreed that support was fragmented, insufficient, and disconnected from actual teaching needs. This aligns with previous studies noting that private universities often face resource constraints, unstable

developmental structures, and weaker technical infrastructures compared with public universities (Yan, 2024).

The finding that 75% of teachers identified the lack of systematic, rank-sensitive training as their most pressing challenge reveals the limitations of "tool demonstration-based" workshops. This underscores the inadequacy of "surface-level digitalization," a phenomenon widely criticized in the Chinese context. Moreover, the absence of structured incentives-highlighted by 50% of teachers-supports the argument that without meaningful reward mechanisms, technology adoption often remains symbolic (Mehdaoui, 2024).

The theoretical implication is clear: teacher professional development in the AI era is far less an individual matter than an institutional one. AI amplifies institutional inequalities by rewarding resource-rich environments and disadvantaging undersupported teachers. This study thus extends ecological perspectives on teacher development by demonstrating that AI intensifies the dependence of teacher growth on institutional conditions, especially in private universities where structural support is already fragile.

5.4. Contributions to the Literature on IPT Education in the AI Era

This study also makes several unique contributions to the specific field of IPT teaching in China. First, it highlights how AI challenges the ideological security and accuracy of IPT content, a concern voiced by 50% of participants. Unlike other disciplines where AI errors may be merely technical, inaccuracies in ideological instruction carry political and value-based consequences. This finding supports emerging discussions on AI's alignment with socialist values and the need for responsible AIGC use in political education. Second, the study shows that the role of the IPT teacher as a value gatekeeper becomes more-not less-important in the AI era. While AI can generate content, only teachers can determine whether such content is politically appropriate, theoretically rigorous, and ideologically aligned. This finding expands current theories by arguing that AI reshapes IPT teachers' work in uniquely sensitive ways, reinforcing their moral and ideological responsibilities. Third, the study underscores the critical need for integrating AI literacy with ideological literacy. This dual competency model contributes a new dimension to IPT pedagogy, emphasizing that algorithmic understanding and ideological discernment are increasingly intertwined.

5.5. Implications for Policy and Practice

The findings have several practical implications. First, private universities must develop tiered, rank-specific AI capacity-building systems rather than generic workshops. Early-career teachers require technical training and promotion-relevant support, while senior professors need advanced workshops on AI ethics, ideological accuracy, and curriculum oversight. Second, universities should establish institution-enterprise partnerships to provide teachers with authentic, hands-on exposure to AI technologies. Third, performance evaluation systems must adapt by recognizing AI-based teaching innovation, digital content development, and interdisciplinary research. Fourth, universities should build AI teaching support teams to reduce teachers' technical burden, enabling them to focus on pedagogical design and value-based guidance. Finally, at the macro level, the study suggests that policymakers should develop national frameworks for AI-integrated IPT education, including guidelines on ethical use, value alignment, and risk prevention. Such frameworks would support private universities in building systematic, sustainable, and ideologically secure AI ecosystems.

6. Conclusion

6.1. Summary of Key Findings

This study reveals that artificial intelligence is fundamentally reshaping the professional development of IPT teachers in private universities. All eight participants acknowledged that AI is now deeply integrated into teaching and research, yet 75% felt unprepared for emerging digital demands, particularly regarding AI literacy, AIGC tool use, and data-informed pedagogy. Competency gaps varied significantly across academic ranks: teaching assistants faced digital pressures linked to promotion; lecturers experienced heightened expectations for innovative, technology-enhanced instruction; associate professors reported shifts in research direction due to AI; and professors emphasized ideological judgment over technical skills. AI also accelerated teachers' role transformation from knowledge transmitters to learning facilitators and ideological evaluators, generating both motivation and anxiety. Importantly, the study found that teachers' capacity to adapt to AI depended heavily on institutional ecology. While basic digital infrastructure existed, teachers described support as fragmented and superficial, with inadequate rank-specific training, limited technical assistance, and weak incentive systems. These structural shortcomings not only hinder meaningful AI integration but also widen existing inequalities within private universities. Overall, the findings highlight that successful AI adoption in IPT education requires coherent institutional systems that integrate technological capacity, value-oriented judgment, and pedagogical innovation.

6.2. Research Limitations and Future Research

This study has several limitations that should be considered when interpreting its findings. The sample size was small, comprising only eight IPT teachers from private universities in Guangdong Province; although purposive sampling ensured variation by academic rank, the limited and region-specific sample restricts generalizability and may not capture the full diversity of private higher education in China. Meanwhile, the exclusive use of qualitative interviews, while valuable for generating rich, contextual insights, does not reveal broader quantitative patterns or the prevalence of specific trends among a larger population of IPT teachers. Moreover, the study reflects teachers' perspectives at a single moment in time during rapid technological change, meaning that shifts in AI tools, institutional policies, and teaching practices may alter teachers' experiences in the near future. To address these constraints, future research should draw on larger and more diverse samples-including teachers from public universities, vocational colleges, and different regions-and adopt mixed-method or longitudinal designs to examine how AI-related competencies and identities evolve over time. Incorporating students' perspectives would provide a fuller picture of AI's impact on IPT education, while further inquiry into AI ethics, value alignment, and ideological accuracy would deepen understanding of responsible AI integration in this politically sensitive field.

Funding: This study is funded by the Doctoral Research Startup Project of Guangdong University of Science and Technology in 2025 (Project Name: Research on the Education of Excellent Traditional Chinese Culture for University Students in Dongguan from the Perspective of Ideological and Political Education. Grant Number: GKY-2025BSQDW-56) and Research Project of Guangdong University of Science and Technology in 2023 (Project Name: Research on the Improvement of Foreign Language Teachers' Digital Literacy Based on Blended Teaching in Universities. Grant Number: GKY-2023KYYBW-36).

References

1. H. Yu, and F. Wang, "Understanding the dynamics of ideological and political education: Influences on student political awareness and civic involvement," *Current Psychology*, pp. 1-18, 2025.

- 2. M. Khatun, R. Islam, S. Kumar, R. Hossain, and L. Mani, "The impact of artificial intelligence on educational transformation: Trends and future directions," *Journal of information systems and informatics*, vol. 6, no. 4, pp. 2347-2373, 2024. doi: 10.51519/journalisi.v6i4.879
- 3. C. Cantlie, "Rewiring Education: Change Leadership for the Age of Artificial Intelligence (Doctoral dissertation, The University of Western Ontario)," 2025.
- K. M. Soni, N. Hasteer, A. Bhardwaj, R. Sindhwani, and J. P. Davim, "AI Based Solutions for Inclusive Quality Education," CRC Press, 2025.
- 5. B. Jose, A. Cleetus, B. Joseph, L. Joseph, B. Jose, and A. K. John, "Epistemic authority and generative AI in learning spaces: rethinking knowledge in the algorithmic age," In *Frontiers in Education*, August, 2025, p. 1647687. doi: 10.3389/feduc.2025.1647687
- 6. R. Luckin, J. Rudolph, M. Grünert, and S. Tan, "Exploring the future of learning and the relationship between human intelligence and AI," *An interview with Professor Rose Luckin. Journal of Applied Learning and Teaching*, vol. 7, no. 1, pp. 346-363, 2024.
- 7. H. Chee, S. Ahn, and J. Lee, "A competency framework for AI literacy: Variations by different learner groups and an implied learning pathway," *British Journal of Educational Technology*, vol. 56, no. 5, pp. 2146-2182, 2025. doi: 10.1111/bjet.13556
- 8. R. Fartusnic, O. Istrate, and C. Fartusnic, "Beyond Automation: A Conceptual Framework for AI in Educational Assessment," *Journal of Digital Pedagogy*, vol. 4, no. 1, pp. 10-61071, 2025.
- 9. C. Yulin, and R. Baki, "Enhancing Human-AI Collaboration Through AIGC in Education and Knowledge Work: A Framework for Co-Creation and Governance,".
- 10. X. Li, "Artificial intelligence in teacher education: Examining critical thinking and creativity through AI usage," In *Forum for Education Studies*, April, 2025, pp. 2727-2727.
- 11. China National Academy of Educational Sciences (CNAES), "Report on China Smart Education 2022: Digital Transformation of Chinese Education Towards Smart Education," *Springer Nature*, 2023.
- 12. S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, and E. Horvitz, "Guidelines for human-AI interaction," In *Proceedings of the 2019 chi conference on human factors in computing systems*, May, 2019, pp. 1-13. doi: 10.1145/3290605.3300233
- 13. D. Gao, and J. Cai, "Challenges and strategies for universities students' ideological and political education in the digital economy era," *Journal of Modern Education and Culture*, vol. 1, no. 4, 2024.
- 14. D. Zou, H. Xie, and L. Kohnke, "Navigating the Future: Establishing a Framework for Educators' Pedagogic Artificial Intelligence Competence," *European Journal of Education*, vol. 60, no. 2, p. e70117, 2025. doi: 10.1111/ejed.70117
- 15. U. Tariq, "Challenges in AI-Powered Educational Technologies: Teacher Perspectives and Resistance," *AI EDIFY Journal*, vol. 1, no. 3, pp. 1-10, 2024.
- 16. O. Serhiienko, M. Tatar, L. Guryanova, O. Shapran, and M. Bril, "IMPROVEMENT OF FINANCIAL INSTRUMENTS OF THE AGRICULTURAL SECTOR AND FOOD SECURITY EFFICIENCY INCREASING," *Economic Studies*, vol. 32, no. 5, 2023.
- 17. C. Day, and J. Sachs, "Professionalism, performativity and empowerment: Discourses in the politics, policies and purposes of continuing professional development," In *International handbook on the continuing professional development of teachers*, 2004, pp. 3-32.
- 18. J. B. McOmber, "Technological autonomy and three definitions of technology," *Journal of communication*, vol. 49, no. 3, pp. 137-153, 1999. doi: 10.1111/j.1460-2466.1999.tb02809.x

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.