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Abstract: With the rapid development of payment scenarios in the financial industry, cybersecurity 
threats are escalating, making payment systems a primary target for attackers. These systems face 
multiple challenges, including data breaches, fraudulent transactions, and malicious attacks. To ad-
dress these issues, this paper proposes a cyber situational awareness model tailored to payment 
scenarios in the financial industry, aimed at enhancing the security capabilities of these systems. 
The model is designed with four layers: data acquisition, data processing, situational awareness, 
and response decision-making. It integrates multi-source data and applies machine learning algo-
rithms for real-time analysis, achieving precise threat detection and effective response. Experi-
mental results show that the model outperforms existing methods in detection accuracy, response 
speed, and applicability. It effectively identifies security vulnerabilities in payment systems and en-
ables timely countermeasures. This study provides theoretical support and technical reference for 
security management in payment scenarios within the financial industry. 

Keywords: financial industry; payment scenarios; cyber situational awareness; model design; cy-
bersecurity 
 

1. Introduction 
With the rapid advancement of digital technologies, payment scenarios in the finan-

cial industry are characterized by high-frequency transactions, real-time processing, and 
diverse services. However, these developments have also made payment systems a prime 
target for cyberattacks, posing significant threats such as data breaches, fraudulent trans-
actions, and malicious software attacks. These security issues not only disrupt the stability 
of payment systems but also erode user trust and cause substantial financial losses. There-
fore, effectively sensing and responding to security threats in payment scenarios has be-
come a critical challenge for the financial industry. Cyber situational awareness (CSA) 
emerges as a promising technical approach for monitoring, analyzing, and assessing sys-
tem security in real-time, offering new perspectives for security management in payment 
scenarios. By integrating multi-source data, analyzing potential threats, and generating 
actionable insights, CSA provides timely and comprehensive security information to de-
cision-makers. However, most existing CSA models are designed for traditional IT sys-
tems and network environments, often falling short in addressing the unique demands of 
payment scenarios, such as transaction-specific features and the need for real-time threat 
detection and response. To overcome these limitations, this paper proposes a CSA model 
specifically tailored to payment scenarios in the financial industry. The model incorpo-
rates four layers—data acquisition, data processing, situational awareness, and response 
decision-making—to comprehensively address the security management needs of pay-
ment systems. By leveraging machine learning algorithms and multi-source data fusion 
techniques, the model enables real-time threat detection and delivers precise situational 
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assessments and response strategies. This research not only provides new ideas for man-
aging payment system security but also lays a theoretical and practical foundation for 
related fields. 

2. Related Research 
2.1. Concept and Classification of Cyber Situational Awareness 

With the rapid expansion of payment scenarios in the financial industry, character-
ized by high-frequency transactions, real-time processing, and multi-channel access, pay-
ment systems have become key targets for cyberattacks. These systems face multiple 
threats, including fraudulent transactions, data breaches, and malicious software attacks. 
The complexity of these security challenges has exposed the limitations of traditional 
static security methods, prompting researchers to adapt CSA theories and techniques to 
payment scenarios. The core objective of CSA is to achieve a comprehensive understand-
ing of system security through multi-layered processes of perception, comprehension, and 
prediction. Following Endsley’s theoretical framework, CSA can be divided into three key 
stages: Perception, which involves detecting the current state of the system; Comprehen-
sion, which provides a deeper understanding of the detected threats; and Prediction, 
which forecasts future risks. For payment scenarios, an additional stage—Mitigation—is 
often included to address threats dynamically, providing a full spectrum of threat man-
agement from detection to resolution. 

 
Figure 1. illustrates the architecture of the CSA model for payment scenarios in the financial indus-
try. 

As shown in Figure 1, the security situation awareness model based on payment sce-
narios in the financial industry can be divided into the following four levels: 

1) Level 1: Perception 
This foundational layer is responsible for real-time monitoring of security threats in 

payment systems. By collecting data from transaction logs, network traffic, system logs, 
and third-party threat intelligence, the model can swiftly identify potential threats, such 
as fraudulent transactions or abnormal payment requests. Techniques such as intrusion 
detection systems (IDS) and security monitoring tools are integrated at this layer to ensure 
baseline security. 

2) Level 2: Comprehension 
This layer further processes data from the perception layer, integrating payment 

business logic and risk rules to conduct risk analysis and security visualization. Beyond 
identifying individual threats, this layer assesses the scope and potential impact of threats 
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through correlation analysis. For instance, when abnormal traffic is detected in a specific 
payment channel, this layer evaluates whether the threat might propagate to other chan-
nels and provides actionable insights. 

3) Level 3: Mitigation 
The mitigation layer implements dynamic risk mitigation strategies to address 

threats identified by the comprehension layer. In payment scenarios, this includes auto-
mated decisions by risk control systems, such as dynamic adjustments to payment limits 
or freezing suspicious accounts. This layer also emphasizes collaboration with Security 
Operations Centers (SOCs) to rapidly block attack paths through human-machine coordi-
nation, minimizing the impact of security incidents on payment systems. 

4) Level 4: Forecasting 
Leveraging historical payment data and machine learning techniques, the forecasting 

layer builds predictive models to identify potential security threats in advance. This layer 
forecasts abnormal transaction patterns and emerging fraud trends, providing proactive 
security guidance. For example, it can predict peak periods for payment fraud in specific 
regions or timeframes, enabling managers to allocate resources in advance. 

Compared to traditional IT systems, CSA models for payment scenarios demand 
higher levels of real-time performance, accuracy, and adaptability. Payment systems in-
volve large volumes of rapidly changing transaction data, requiring efficient processing 
of high-frequency data streams with minimal latency. Researchers have integrated ad-
vanced techniques, such as distributed computing, real-time stream processing, and 
multi-source data fusion, into model design to meet these unique demands. In summary, 
the proposed CSA model for payment scenarios establishes comprehensive control over 
payment system threats through its four-layered architecture. Future research should ex-
plore optimization opportunities through emerging technologies, such as artificial intelli-
gence, big data, and blockchain, to enhance the model’s intelligence, real-time perfor-
mance, and scalability in addressing increasingly complex security challenges [1]. 

2.2. Security Challenges in Payment Scenarios 
The rapid digitization of the financial industry has introduced increasing complexity 

and diversity to payment scenarios, encompassing not only traditional bank transfers but 
also mobile payments, online shopping, and cross-border transactions. This complexity 
creates new vulnerabilities for cybercriminals, presenting unprecedented security chal-
lenges for payment systems. Figure 2 summarizes the key cybersecurity threats currently 
facing the financial payment sector, which span technical, organizational, and third-party 
risks [2]. 
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Figure 2. Emerging Cybersecurity Threats in Financial Payment Scenarios. 

Among these threats, third-party risk is particularly prominent. Payment systems of-
ten collaborate with external vendors, payment gateways, and fintech companies, which 
may serve as weak links in the security chain. A breach in these third-party systems can 
result in cascading effects, including data leaks and system outages across the entire pay-
ment ecosystem. Other significant threats include phishing attacks and malware, where 
attackers impersonate legitimate entities to deceive users into providing sensitive infor-
mation, such as credit card numbers or account credentials. Malware infections on pay-
ment terminals can lead to data theft or unauthorized transaction modifications. Ransom-
ware and DDoS attacks have more immediate impacts, disrupting the availability of pay-
ment systems. Ransomware encrypts system files to extort payment, while DDoS attacks 
overwhelm systems with traffic, rendering them inaccessible [3]. The rise of remote work 
has also intensified security challenges. Employees accessing critical payment systems 
from unsecured environments have increased vulnerability to attacks. Furthermore, AI-
related threats are emerging, as attackers use AI to craft sophisticated phishing campaigns 
or identify system vulnerabilities more rapidly. Lastly, data breaches and Trojans/key log-
gers remain persistent threats, exposing sensitive user data and stealing critical transac-
tion details. Addressing these challenges requires enhanced real-time threat monitoring, 
AI and big data analytics, stronger third-party security partnerships, and robust security 
strategies for remote work environments. Comprehensive CSA models can equip pay-
ment systems to effectively navigate these complex security landscapes, ensuring sustain-
able growth in the financial industry [4]. 

3. Model Design 
3.1. Design Objectives and Principles 

The design of a cyber situational awareness model for payment scenarios in the fi-
nancial industry must fully account for the characteristics and security requirements of 
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payment systems. Payment scenarios involve high-frequency transactions, the transmis-
sion of large amounts of sensitive data, and diverse, complex security threats. Thus, the 
model should focus on real-time capabilities, accuracy, intelligence, and scalability, while 
also ensuring compatibility and operational effectiveness. One key objective is to achieve 
real-time system responsiveness. Given the millisecond-level response requirements of 
payment transactions, the model must rapidly detect and respond to threats, ensuring 
continuous control of the system's security status. Accuracy is another core goal, as the 
model must precisely identify and assess threat types, minimizing false positives and false 
negatives to reduce disruption to business operations. Intelligence is reflected in the mod-
el's ability to leverage artificial intelligence techniques to autonomously learn new threat 
patterns, dynamically adapt, and predict future risks. Scalability is crucial to accommo-
date the increasing volume and complexity of transactions as payment systems grow [5]. 
Additionally, compatibility ensures the model can seamlessly integrate with existing pay-
ment system architectures and security tools. From a design principles perspective, a lay-
ered structure is the core approach. By dividing the model into four levels—Perception, 
Comprehension, Mitigation, and Prediction—each level can focus on specific functions 
while collaborating to provide comprehensive threat management. Multi-source data fu-
sion is a key enabler for the model's efficiency, combining transaction logs, network traffic, 
user behavior data, and external threat intelligence to deliver a holistic security view. The 
principle of risk minimization emphasizes prioritizing high-risk threats to safeguard crit-
ical payment operations. Dynamic adaptability ensures the model can adjust detection 
strategies and response measures in real-time as threats evolve. Lastly, explain ability is 
essential, enabling the model to produce clear and interpretable threat analysis results that 
security teams can quickly understand and act upon [6]. The table 1 below summarizes 
the alignment between design objectives and principles: 

Table 1. Correspondence between design goals and principles of the model. 

Design Objective Implementation Principle Description 
Real-time system 
responsiveness 

Layered structure, dy-
namic adaptability 

Enhances threat detection and response 
speed through modular design. 

Improved threat 
detection accuracy 

Multi-source data fusion, 
risk minimization 

Analyzes threat characteristics using di-
verse data sources and prioritizes critical 

threats. 

Business scalability Layered structure, dy-
namic adaptability 

Modular design and flexible strategies 
support seamless expansion for growing 

demands. 

Enhanced  
intelligence 

Dynamic adaptability, 
multi-source data fusion 

Employs AI to strengthen the identifica-
tion and prediction of unknown threats, 

achieving higher automation levels. 

Ensured system 
compatibility 

Layered structure, explain 
ability 

Integrates with existing payment sys-
tems and provides clear threat analysis 

outputs for easy operation. 
With these objectives and principles, the cyber situational awareness model effec-

tively addresses the diverse and complex security threats in payment scenarios, providing 
comprehensive protection while improving system security and stability [7]. 

3.2. Model Architecture 
In payment scenarios, the architecture of the cyber situational awareness model must 

cover the entire lifecycle, from threat detection to response decision-making, and dynam-
ically adapt to environmental changes. Figure 3 presents a systematic model architecture 
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based on situational awareness theory, which integrates environmental conditions, infor-
mation processing mechanisms, and decision-making processes into a layered and adap-
tive security management framework [8]. 

 
Figure 3. Cyber Situational Awareness Model Architecture for Payment Scenarios. 

The core of the model consists of three levels of cyber situational awareness: Level 
One: Network Situational Awareness, This level focuses on real-time perception of key 
threats and security events in the environment. By integrating payment transaction logs, 
network traffic data, and threat intelligence, it rapidly identifies anomalies or potential 
threats. Level Two: Network Situational Understanding, Based on raw data provided by 
the perception layer, this level uses risk analysis and data correlation techniques to deeply 
analyze the nature, scope, and potential impact of threats. In payment scenarios, this level 
identifies fraudulent transaction chains or behaviors that may lead to systemic risks. Level 
Three: Network Future Prediction, the prediction layer leverages machine learning algo-
rithms and historical data to anticipate future security events. This layer provides for-
ward-looking support for payment system security, such as forecasting DDoS attacks dur-
ing peak transaction periods or identifying the spread of new phishing techniques. The 
model's operation is influenced by multiple external and internal factors. Environmental 
conditions, including transaction environments, user behaviors, and third-party networks, 
serve as inputs for the model. These conditions are processed by an information pro-
cessing mechanism that includes long-term memory storage and degrees of automation 
to ensure the efficiency and accuracy of the processing results. The decision module is a 
critical component of the model, responsible for formulating response strategies based on 
the situational analysis results [9]. For payment scenarios, the decision module must be 
both flexible and precise, capable of initiating payment freezes, risk alerts, and strategy 
adjustments. Finally, the decisions are translated into implementation activities, such as 
intercepting malicious payment requests or adjusting transaction limits. Additionally, the 
model emphasizes system capability, including interface design, complexity, and auto-
mation load. The model's effectiveness not only relies on data processing and decision-
making mechanisms but also requires capability-building and training to enhance overall 
security performance. For example, improving the skills of security teams and optimizing 
payment system processes can significantly boost the model's performance in practical 
applications. Through this architecture design, the model comprehensively addresses the 
complex security threats in payment scenarios. It not only detects current threats in real-
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time but also provides forward-looking support through predictive capabilities, creating 
a dynamic and adaptive security management system for payment systems [10]. 

4. Data Processing and Analysis 
4.1. Data Sources and Preprocessing 

In the cyber situational awareness model for financial payment scenarios, data 
sources form the foundational basis for model design. The data in payment scenarios is 
complex and diverse, encompassing transaction behavior, network traffic, system logs, 
and external threat intelligence. These data sources are characterized by real-time, high-
frequency attributes, but may also contain inconsistencies and noise, making effective pre-
processing essential to ensure data quality and consistency. To fully support the model's 
functionality, the data sources are divided into the following categories: Payment Trans-
action Logs: These logs record detailed information about each transaction, including 
transaction amount, timestamp, user ID, and payment channel. This data is crucial for 
identifying anomalous transactions. Network Traffic Data: This includes network com-
munication data within the payment system, such as IP addresses, access frequencies, and 
packet contents, which help detect potential network attacks. System Logs: These logs, 
including server operation logs and error logs, assist in monitoring system status and 
identifying malicious activities or potential threats. External Threat Intelligence: This con-
sists of threat information from third-party security providers or open-source threat intel-
ligence platforms, including the latest attack patterns and lists of malicious IP addresses. 
User Behavior Data: This tracks user payment operations, such as device usage, geo-
graphic location, and payment habits, which are used to build user behavior models. The 
table 2 below provides an overview of the main fields for each data source: 

Table 2. Data Source. 

Data Source Field Names Description 
Payment Transaction 

Logs 
Transaction ID, User ID, Amount, 

Timestamp 
Basic information for each pay-

ment transaction. 

Network Traffic Data 
Source IP, Destination IP, Packet 

Size, Access Frequency 
Key characteristics of network 

communication behavior. 

System Logs 
Timestamp, Log Type, Event De-

scription 
Records the system's opera-
tional state and exceptions. 

External Threat Intel-
ligence 

Malicious IP Addresses, Attack 
Types, Risk Levels 

Provides real-time information 
on known threats. 

User Behavior Data User ID, Device Type, Geographic 
Location, Payment Habits 

Describes user operations and 
preferences. 

Given the complexity and diversity of data sources, the following preprocessing 
steps are necessary to ensure the model's accuracy and stability: Data Cleaning: Remove 
null values, incomplete data, and anomalies, such as invalid network packets and invalid 
transactions in payment logs. Data Formatting: Standardize field names and formats, such 
as aligning timestamp formats across different sources to facilitate data integration. Data 
Denoising: Apply filtering and dimensionality reduction techniques to remove redundant 
information and high-frequency noise in network traffic, ensuring data reliability. Data 
Augmentation: Enrich user behavior data with contextual information, such as combining 
historical transaction data to enhance payment behavior features. Feature Extraction: Ex-
tract key features from raw data, such as statistical characteristics of transaction amounts, 
spectral features of network traffic, and temporal patterns of user behavior, to support 
subsequent analysis and modeling. By leveraging high-quality data sources and system-
atic preprocessing methods, the situational awareness model can obtain accurate and 
comprehensive input data. These data support the model's capabilities in threat detection 
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and analysis, while also laying a robust foundation for risk prediction and dynamic re-
sponse. 

4.2. Key Techniques and Algorithms 
In the situational awareness model for financial payment scenarios, algorithmic tech-

niques are the driving force behind effective threat perception, analysis, and prediction. 
By employing advanced machine learning and data mining techniques, the model can 
efficiently handle complex, multi-source data and deliver robust performance in real-time 
detection, risk evaluation, and threat prediction. This section introduces the key technical 
methods and core algorithms that meet the model's requirements. 

4.2.1. Multi-Class Threat Detection Algorithm 
Payment scenarios involve multiple types of threats, including fraudulent transac-

tions, malware attacks, and abnormal network traffic. To identify these threats, multi-class 
algorithms such as Support Vector Machines (SVM) can be used. The multi-class objective 
can be expressed as shown in Formula 1: 

f(x) = arg max
k

(wk ⋅ x + bk)                （1） 
where f(x) is the classification decision function, k denotes the threat category (e.g., 

fraudulent transactions or normal transactions), wk and bk are the classifier's weights 
and biases, respectively, and x is the input feature vector (e.g., transaction amount or time 
intervals). SVM maximizes the classification margin to improve accuracy. 

4.2.2. Time Series Prediction Algorithm 
To forecast future threats in payment systems, Long Short-Term Memory (LSTM) 

networks can be employed for time series prediction. LSTM effectively captures temporal 
dependencies in payment data to predict potential attack trends or abnormal transactions. 
The LSTM cell update formula is as shown in Formula 2: 

ht = ot ⊙ tanh (ct)                       （2） 
where ht is the hidden state at time t, ot is the output gate, ct is the cell state, and 

⊙  represents element-wise multiplication. Through recursive computations, LSTM 
learns historical behavioral patterns in payment systems and predicts future threats. 

4.2.3. Data Clustering Algorithm 
In large-scale payment data, some anomalous transactions may not be labeled. To 

uncover these potential threats, K-Means Clustering, an unsupervised learning method, 
can be applied. By clustering, transaction data can be grouped into different categories, 
and anomalies can be identified as outliers. The K-Means objective function is as shown 
in Formula 3: 

J = ∑ ∑ ∥ x − μi ∥2x∈Ci
K
i=1                 （3） 

where K is the number of clusters, Ci represents the i-th cluster, μ is the centroid of 
cluster Ci, and x is a data point. Minimizing J groups similar transactions while segregat-
ing anomalies into distinct clusters. These three algorithms play distinct roles within the 
model: Multi-Class Threat Detection identifies known threat categories in real-time, mak-
ing it suitable for rapid response in payment scenarios. Time Series Prediction enables 
dynamic early warning systems for future threats, providing proactive decision-making 
support for managers. Data Clustering Analysis uncovers unknown threats, contributing 
to the model's continuous optimization and extension. By integrating these algorithms, 
the model achieves comprehensive capabilities, ranging from static detection to dynamic 
prediction, providing efficient and intelligent security protection for financial payment 
scenarios. 
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5. Experiment and Validation 
To evaluate the effectiveness of the cyber situational awareness model tailored for 

financial payment scenarios, a series of experiments were designed and conducted to as-
sess the model's performance in threat detection, risk analysis, and situational forecasting. 
The experimental data comprised real payment system logs, simulated network traffic 
data, and external data from third-party threat intelligence platforms. The focus was on 
evaluating the model's accuracy, real-time responsiveness, and predictive capabilities. 
The goal of the experiments was to thoroughly assess the practical performance of the 
model across three main tasks: threat detection, risk analysis, and threat prediction. To 
achieve this, the experiment was divided into three stages: data preparation, experimental 
setup, and performance evaluation. 

Table 2. Experimental Data. 

Data Source Sample Size Key Features Objective 
Payment Transaction 

Logs 
500,000 Transaction amount, 

timestamp, user ID 
Anomalous transac-

tion detection 

Network Traffic Data 100,000 
Source IP, destination 

IP, packet size 
Anomalous network 

traffic detection 
External Threat Intel-

ligence 10,000 
Malicious IPs, attack 

patterns 
Threat feature extrac-

tion and analysis 
As shown in Table 2, the dataset used in the experiments consisted of three compo-

nents, covering critical data sources in payment scenarios. First, payment transaction logs 
formed the core of the dataset, containing approximately 500,000 transaction records with 
attributes such as transaction amount, timestamp, user ID, and payment channel. These 
logs provided the basis for anomaly detection. Second, network traffic data, consisting of 
100,000 communication records with features such as source IP, destination IP, packet size, 
and communication frequency, was used to capture potential network threats in the pay-
ment system. Finally, external threat intelligence from third-party platforms included 
10,000 malicious IPs and known attack patterns, enriching the model's ability to identify 
new threats. To ensure data quality and consistency, several preprocessing steps were ap-
plied to the raw data. Data cleaning removed invalid or incomplete records, while de-
noising eliminated redundant information from network traffic. Additionally, feature ex-
traction identified key variables such as transaction amount distributions, user behavior 
patterns, and network traffic characteristics, ensuring high-quality input for model train-
ing and testing. The experimental setup involved three specific tasks: Threat Detection: 
Support Vector Machines (SVM) were used to classify anomalous transactions in payment 
logs, aiming to evaluate the model's ability to identify known threats. Risk Analysis: K-
means clustering was employed to group unlabelled data and uncover potential unknown 
threats. Threat Prediction: Long Short-Term Memory (LSTM) networks were utilized to 
predict abnormal transaction trends within the next hour, providing forward-looking se-
curity recommendations for the payment system. The experiments evaluated the model's 
performance using four key metrics: Accuracy: Measures the overall correctness of the 
model in threat detection. Recall: Reflects the model's sensitivity in identifying anomalous 
transactions. Response Time: Assesses the model's real-time performance in payment sce-
narios. Prediction Error: Evaluates the accuracy of the LSTM model in the threat predic-
tion task. These stages provided a robust foundation for comprehensively assessing the 
model's functionality. The results revealed the model's applicability and areas for im-
provement in real-world payment scenarios. As illustrated in Figure 4, the SVM classifi-
cation model performed effectively in detecting threats within payment transaction logs. 
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Figure 4. SVM Classification Results. 

The results demonstrated high accuracy and recall rates, effectively identifying 
anomalous transactions in payment scenarios. Additionally, the response time met the 
real-time requirements of payment systems. Figure 5 shows the results of K-means clus-
tering on network traffic data. 

 
Figure 5. K-means Clustering Results. 

The clustering method effectively distinguished normal traffic from anomalous traf-
fic, with an anomaly rate of nearly 90% for high-risk traffic, demonstrating strong anom-
aly detection capabilities. The performance of the LSTM model in predicting abnormal 
transactions for the next hour is shown in Figure 6. 

 
Figure 6. LSTM Prediction Results. 
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The results indicated that the LSTM model accurately predicted future abnormal 
transaction trends, with a prediction error rate consistently below 5%. Overall, the exper-
imental results confirmed the model's excellence in threat detection, risk analysis, and fu-
ture trend prediction. The application of the model in payment scenarios significantly im-
proved the ability to identify anomalous transactions and predict system risks, providing 
robust support for the security of financial payment systems. Additionally, the results 
validated the model's real-time efficiency and effectiveness, demonstrating its feasibility 
and practicality in real-world scenarios. 

6. Conclusion 
This paper proposed a cyber situational awareness model tailored for financial pay-

ment scenarios, achieving comprehensive protection against complex security threats 
through four layers: perception, comprehension, mitigation, and prediction. Experimental 
results demonstrated the model's outstanding performance in detection accuracy, in-
depth risk analysis, and forward-looking predictive capabilities, meeting the high require-
ments of real-time security in payment systems. The model's integration of multi-source 
data and intelligent algorithms also provided strong support for its scalability and adapt-
ability in practical applications. Future research will focus on optimizing the model's al-
gorithmic efficiency and incorporating emerging technologies such as blockchain and pri-
vacy-preserving computation to further enhance its security performance and application 
scope. 
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