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Abstract: This paper proposes a novel blockchain and federated learning fusion model for supply 
chain credit risk assessment. The focus is on combining privacy protection with collaborative learn-
ing. The model combines federated learning with blockchain technology. Multiple participants train 
a global model collaboratively without sharing raw data. Blockchain technology ensures data im-
mutability and transparency. This fusion protects data privacy and ensures the integrity of the col-
laborative training process. The study evaluates the model's performance in terms of accuracy, pri-
vacy protection, and system performance. It also compares the model with traditional centralized 
and federated learning models. Experimental results show that the proposed model has significant 
advantages in privacy protection. The use of differential privacy and blockchain immutability effec-
tively reduces the risk of data leakage. However, there is a tradeoff between privacy protection and 
model performance. The integration of blockchain slightly affects model accuracy. Furthermore, the 
study demonstrates the model's robustness under different data distributions and varying numbers 
of nodes. This proves its effectiveness in real world applications, especially in multi-party collabo-
ration contexts. Finally, the paper discusses challenges in optimizing blockchain performance and 
applying federated learning in privacy sensitive environments. It also outlines prospects for scala-
bility and application in supply chain finance systems. 
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differential privacy 
 

1. Introduction 
1.1. Background and Research Motivation 

In recent years, the rapid development of global supply chain finance has brought 
unprecedented opportunities for corporate financing and risk management [1]. However, 
it has also raised significant challenges in credit risk assessment. Data among supply chain 
participants are decentralized and highly sensitive [2]. Although traditional centralized 
data processing can integrate information, it often faces limitations such as restricted data 
sharing, high privacy leakage risks, and difficulties in cross-organizational collaboration 
[3]. These issues directly affect the accuracy and timeliness of credit risk assessments. 

Federated learning, an emerging distributed machine learning method, allows each 
participant to independently train models on local data and share only encrypted param-
eters or gradients [4]. This approach enables the collaborative construction of a global 
model while protecting data privacy. Nonetheless, federated learning still encounters 
challenges in practice, such as uneven data distribution and insufficient transparency in 
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model update processes, especially in supply chain finance scenarios [5]. Blockchain tech-
nology, with its decentralized, immutable, and traceable characteristics, offers a novel so-
lution to these problems [6]. By recording model parameter updates and associated 
metadata on the blockchain and utilizing smart contracts for automatic verification and 
incentive mechanisms, the security and trustworthiness of the model aggregation process 
can be enhanced. This approach effectively mitigates the risks related to data privacy and 
information security. 

Therefore, this study aims to develop a supply chain credit risk assessment model 
that integrates blockchain and federated learning. The proposed model seeks to improve 
prediction accuracy and overall system trustworthiness while ensuring data privacy and 
security for all participants. This method not only provides a new technical pathway for 
risk management in supply chain finance but also offers theoretical support and practical 
guidance for addressing distributed data security and cross-organizational collaborative 
learning challenges. 

1.2. Existing Research and Limitations 
Credit risk assessment in supply chain finance has been a significant topic in financial 

technology [7]. Traditional credit evaluation methods primarily rely on centralized data 
processing and analysis. In this model, data from various participants is usually central-
ized for unified modeling and analysis to predict credit risk [8]. However, while central-
ized methods can improve prediction accuracy to some extent, they often face challenges 
related to data privacy protection, information security, and cross-institutional collabora-
tion. Existing literature identifies data privacy breaches, information asymmetry, and ob-
stacles in data sharing as major limitations of centralized credit evaluation methods [9]. 
To address these issues, federated learning, an emerging distributed learning approach, 
has gained widespread attention in recent years. Federated learning allows data to remain 
local while sharing only model parameters or gradients, avoiding the leakage of raw data 
and resolving the conflict between privacy protection and data sharing [10]. In the finan-
cial sector, federated learning has been applied to tasks such as credit scoring and fraud 
detection [11]. Research has shown that federated learning can enable collaborative mod-
eling between different financial institutions without violating privacy policies. However, 
despite the great potential of federated learning, its application in supply chain credit risk 
assessment remains exploratory [12]. Most existing studies focus on areas like traffic flow 
prediction and healthcare, with limited research applying federated learning to complex 
supply chain finance environments. At the same time, blockchain technology, with its de-
centralized, immutable, and traceable characteristics, has shown significant advantages in 
data certification, information sharing, and security assurance. The introduction of block-
chain can effectively address data privacy issues in traditional centralized models, en-
hancing the credibility and transparency of information exchange. While blockchain has 
been widely discussed in the context of supply chain finance, most research focuses on 
the application of blockchain technology alone, lacking systematic exploration of its inte-
gration with other advanced technologies, such as federated learning [13]. In the context 
of supply chain credit risk assessment, how to combine blockchain and federated learning 
to not only solve data privacy and security issues but also enable efficient model training 
and credible verification remains an underexplored research direction [14]. 

In summary, current research faces several key limitations. Traditional centralized 
credit evaluation methods have significant flaws in data privacy protection and cross-in-
stitutional collaboration. While federated learning shows potential in privacy protection, 
its application and validation in supply chain credit risk assessment remain insufficient. 
Additionally, blockchain technology has mainly been applied in data certification and se-
curity, with limited research on its integration with federated learning, particularly in en-
hancing model credibility and verification processes in supply chain credit risk evaluation. 
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Therefore, combining the technological advantages of blockchain and federated 
learning to create a distributed model that both ensures data privacy and improves credit 
risk assessment accuracy is a critical issue in the field of supply chain finance. This study 
aims to address this issue by integrating these two technologies and testing their effec-
tiveness in practical applications. 

1.3. Research Objectives and Innovative Contributions 
This study aims to propose a supply chain credit risk assessment model that inte-

grates blockchain and federated learning, addressing the shortcomings of existing models 
in terms of data privacy protection, cross-institutional collaboration, and information se-
curity. Specifically, the primary goal of this study is to develop a distributed model that 
can accurately and efficiently assess credit risk in supply chain finance while ensuring 
data privacy and security. 

First, the proposed model utilizes federated learning to ensure that data remains local 
to each participant, with only encrypted model parameters or gradients shared. This ef-
fectively protects sensitive data while still enabling collaborative training to improve 
model performance. Compared to traditional centralized models, federated learning over-
comes the limitations of data sharing and leverages local data characteristics from multi-
ple participants, thereby enhancing the model's generalization ability. 

Second, this study innovatively introduces blockchain technology into the federated 
learning framework. By utilizing blockchain's immutability and traceability features, the 
model ensures the security and credibility of parameter exchanges during the training 
process. Blockchain not only records the model updates from each participant during ag-
gregation but also uses smart contracts to ensure the transparency and consistency of 
these updates, thereby enhancing the overall system's trustworthiness and reliability. 

The innovative contributions of this study are as follows: 
1) The introduction of a novel framework combining blockchain and federated 

learning, which ensures data privacy and the security of model updates through 
blockchain, while leveraging federated learning to improve model accuracy and 
collaborative training efficiency. 

2) The design of a distributed credit risk assessment model tailored for supply 
chain finance, filling the gap in research on the application of blockchain and 
federated learning in this field. 

3) The proposal of a reputation-based incentive mechanism and the use of smart 
contracts in the model training process, which further enhance the collaboration 
and stability of multi-party participation in the model aggregation process. 

Thus, this study not only provides a new technical solution for credit risk assessment 
in supply chain finance but also offers significant theoretical and practical insights for the 
combined application of blockchain and federated learning across various domains. 

1.4. Related Work 
In recent years, supply chain finance has grown rapidly. Credit risk assessment faces 

challenges in data privacy and secure sharing among multiple parties. Existing research 
focuses on three directions. The first is blockchain applications in supply chain finance. 
The second is traditional and ensemble credit risk methods. The third is research on com-
bining blockchain and federated learning. 

1.4.1. Blockchain in Supply Chain Finance 
Blockchain offers decentralization, immutability, and traceability. These features 

support information security and process transparency in supply chain finance. Wang et 
al. used a three-tier supply chain model and game theory to study equilibrium strategies 
in blockchain-driven accounts receivable chains [15]. Amini et al. proposed a decentral-
ized clearing mechanism. They used smart contracts to automate claim resolution and 
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payment verification [16]. Li et al. designed Fabric-SCF [17]. This system uses distributed 
consensus, attribute-based access control, and smart contracts to secure data storage and 
access in supply chains. These studies highlight blockchain's role in data integrity and 
trust. However, they do not address privacy-preserving collaborative models like feder-
ated learning. 

1.4.2. Credit Risk Assessment Methods 
Credit risk assessment has evolved from single classifiers to ensemble learning. Xia 

et al. combined bagging and stacking [18]. Their heterogeneous ensemble credit model 
improved prediction through pool generation and a trainable fusion. Pławiak et al. devel-
oped a deep genetic cascade ensemble of SVMs [19]. This method used multiple kernels 
and parameter tuning to enhance stability and accuracy. Dumitrescu et al. proposed pe-
nalized logistic tree regression (PLTR) [20]. This method integrated decision tree outputs 
into logistic regression. It balanced interpretability and performance. These methods im-
prove accuracy but rely on centralized data sharing. They do not meet privacy and com-
pliance needs in multi-party settings. 

1.4.3. Blockchain and Federated Learning Integration 
Some studies combine blockchain and federated learning to address privacy risks. 

Imteaj & Amini applied federated learning for credit default prediction [21]. They bal-
anced model accuracy and data privacy. Cheng et al. analyzed Secure Boost [22]. They 
proved that this federated boosting model matches non-federated performance. Others 
record model parameter hashes on the blockchain. This practice ensures immutability and 
auditability of training. However, these approaches focus on unstructured scenarios or 
single attack defenses. They lack an end-to-end design that integrates differential privacy 
noise, on-chain hash storage, and smart contract validation for supply chain credit risk 
assessment. 

Overall, prior work has advanced secure storage with blockchain, ensemble models, 
and privacy in federated learning. Yet, there is no unified solution for supply chain credit 
risk assessment. This paper fills the gap. It proposes a blockchain and federated learning 
framework. It adds differential privacy noise to local updates. It stores only parameter 
hashes on-chain and uses smart contracts for integrity checks. This design supports 
multi-party credit risk assessment. 

2. Materials and Methods 
2.1. Model Architecture Overview 

This study presents a supply chain credit risk assessment model that integrates two 
cutting-edge technologies: blockchain and federated learning. The goal is to provide an 
efficient, transparent, and data-privacy-preserving collaborative training platform. By 
combining blockchain and federated learning, the system ensures data security, transpar-
ency, and fairness for all participants, while also optimizing the performance of the global 
model.  

The model architecture consists of two main components: the blockchain module and 
the federated learning module. The blockchain module is responsible for recording and 
verifying the model updates of all participants, ensuring the transparency and immuta-
bility of each update. The federated learning module coordinates various participants 
(such as core enterprises, suppliers, banks, etc.) to train models based on their own local 
data, using a global aggregation algorithm to update the model. The combination of these 
components allows participants to collaborate and improve the global model without di-
rectly exchanging local data, ensuring both data privacy protection and system fairness. 

The federated learning and blockchain co-training process is as follows: 
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1) Local Model Training: Each participant independently trains a model on their 
local dataset. After each training round, the participant computes the local 
model parameters and prepares to upload them. 

2) Model Parameter Upload and Validation: The uploaded local model parameters 
are hashed and recorded on the blockchain. After uploading, the model param-
eters are validated by a smart contract to ensure their legality and accuracy, pre-
venting any malicious tampering. 

3) Global Model Aggregation: All uploaded local model parameters are aggre-
gated using the FedAvg algorithm, which computes a weighted average to gen-
erate the global model. Blockchain ensures the transparency of the model up-
date process, with each participant's contribution being properly recorded. 

4) Model Update and Sharing: After the global model is aggregated, the model 
parameters and associated metadata are shared with all participants through 
the blockchain. This ensures that every participant receives the updated global 
model. The entire process is also validated by the smart contract to ensure that 
the uploaded model updates are legitimate and that each participant's contribu-
tion is acknowledged. 

The model architecture is shown in Figure 1. 

 
Figure 1. Model Architecture. 

2.2. Blockchain Module Design 
In this study, the blockchain module is designed to ensure the security, transparency, 

and immutability of the model update process within the supply chain credit risk assess-
ment model. Blockchain is primarily used to record and validate the updates of model 
parameters, ensuring that each update is legitimate and unalterable. 

The blockchain module operates by recording each model update in a block, which 
is then added to the blockchain. Each block is linked to its predecessor, creating a chain 
structure that guarantees the immutability of the data. This section describes the specific 
design and implementation of the blockchain module, focusing on the block structure, the 
role of smart contracts in model updates, and the provenance and anti-tampering mecha-
nisms for model parameters. 

2.2.1. Blockchain Structure 
Each model update generates a new block in the blockchain. The block is divided into 

two main parts: the block header and the block body. 
The block header contains essential information that ensures the integrity and secu-

rity of the blockchain. It includes the Previous Block Hash, which stores the hash of the 
previous block, ensuring the chain structure and maintaining the sequence and immuta-
bility of the data. The Current Block Hash uniquely identifies the current block, prevent-
ing any tampering with the data. The Timestamp records the exact time of each model 
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update, ensuring that each operation can be traced. Additionally, the Node ID is included 
to identify which node (e.g., a bank or a supplier) submitted the model update. The hash 
value 𝐻𝐻(𝐵𝐵𝑖𝑖) of each block 𝐵𝐵𝑖𝑖 is calculated as: 

𝐻𝐻(𝐵𝐵𝑖𝑖) = 𝐻𝐻�Previous Block Hash, Timestamp, Node ID, Model Parameters Hash� (1) 
This formula guarantees the uniqueness and security of each block, linking it to its 

predecessor and preventing any modifications. 
The block body contains detailed information about the model update. The Model 

Parameters Hash stores the hash of the updated model parameters. The SHA-256 hashing 
algorithm is used to ensure the immutability of these parameters. The Model Version field 
records the version of the model with each update, maintaining version control. The Up-
date Log captures the specific changes made during the update process, ensuring trans-
parency and traceability. For instance, if 𝜃𝜃 new represents the current model's parame-
ters, the hash of these parameters is calculated using the SHA-256 algorithm: 

𝐻𝐻(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛) = SHA − 256(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)          (2) 
The block body stores this hash value 𝐻𝐻(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛), the model version, and the update 

log, ensuring that each update is accurately recorded and retrievable. 

2.2.2. Role of Smart Contracts in Model Update and Validation 
Smart contracts in the blockchain module automatically validate the legitimacy of 

each model update, ensuring that every update adheres to predefined rules. The smart 
contract eliminates the need for manual intervention, improving the efficiency and fair-
ness of the update process. 

The smart contract performs the following functions: 
1) Validation of Model Parameters: It checks whether the uploaded model param-

eters meet the required format and dimension standards. 
2) Validation of Update Legality: It ensures that the model update adheres to pre-

defined rules, such as permissible parameter changes and model training guide-
lines. 

3) Incentive Mechanism: The smart contract manages the incentive system, re-
warding nodes that contribute to the model training based on their update fre-
quency, accuracy, and other performance metrics. 

The smart contract verification process is represented by the following pseudocode: 
If   𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 ∈ ℝ𝑛𝑛  and   ValidUpdate(𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)  then  ExecuteUpdate (𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)  (3) 
Here, ValidUpdate ensures that the model parameters are formatted correctly, and 

ExecuteUpdate applies the valid update. 

2.2.3. Model Parameter Provenance and Anti-Tampering Mechanism 
The decentralized and immutable nature of blockchain ensures that the provenance 

of model parameters is recorded in a secure manner. Each time a model's parameters are 
updated, the hash of these parameters is stored on the blockchain, ensuring that each 
model update is traceable and immutable. 

Encrypted Hash Provenance: Every locally trained model parameter 𝜃𝜃𝑖𝑖 is hashed 
using the SHA-256 algorithm, generating a hash value 𝐻𝐻(𝜃𝜃𝑖𝑖), which is stored on the block-
chain. This guarantees the integrity and authenticity of the model parameters: 

𝐻𝐻(𝜃𝜃𝑖𝑖) = SHA − 256(𝜃𝜃𝑖𝑖)           (4) 
Anti-Tampering Mechanism: Since each block contains the hash of the previous block, 

any attempt to tamper with the data would alter the hash, disrupting the blockchain struc-
ture. This triggers an alert system that ensures the integrity of the data. The combination 
of hash algorithms and blockchain's linked structure offers a robust defense against tam-
pering. 
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2.3. Federated Learning Module Design 
2.3.1. Local Model Architecture 

In this study, we adopt the Multilayer Perceptron (MLP) as the local model architec-
ture for each participant. MLP is a classical deep learning model consisting of multiple 
fully connected layers, where each neuron is connected to all neurons in the previous layer. 
The model is designed with an input layer, several hidden layers, and an output layer. 

Each participant trains its local model based on its local dataset 𝐷𝐷𝑖𝑖 . During each 
training step, the participant updates its local model parameters 𝑤𝑤𝑖𝑖  based on the loss 
function 𝐿𝐿(𝑤𝑤) using gradient descent. The parameter update rule at the t-th round of 
training is as follows: 

𝑤𝑤𝑖𝑖
(𝑡𝑡) = 𝑤𝑤𝑖𝑖

(𝑡𝑡−1) − 𝛼𝛼∇𝐿𝐿(𝑤𝑤𝑖𝑖
(𝑡𝑡−1),𝐷𝐷𝑖𝑖)         (5) 

Where 𝑤𝑤𝑖𝑖
(𝑡𝑡) is the model weight of participant ii at the tt-th round, 𝛼𝛼 is the learning 

rate, and ∇𝐿𝐿(𝑤𝑤𝑖𝑖
(𝑡𝑡−1),𝐷𝐷𝑖𝑖) is the gradient of the loss function computed over the local da-

taset 𝐷𝐷𝑖𝑖. 
The local model consists of an input layer that receives the features of the local data, 

hidden layers using activation functions to perform nonlinear mappings, and an output 
layer that produces the final prediction. The architecture of the MLP may vary depending 
on the complexity and characteristics of the data. Through this design, each participant 
independently performs model training and generates a local model without exposing 
their local data. 

The model formulas are shown in Figure 2. 

 
Figure 2. Model Formulas. 

2.3.2. FedAvg Aggregation Strategy and Communication Mechanism 
In federated learning, the aggregation strategy determines how to combine the local 

model updates from multiple participants into a global model. In this study, we adopt the 
FedAvg (Federated Averaging) algorithm as the aggregation strategy. This algorithm per-
forms weighted averaging of the local model parameters from each participant to generate 
the global model. 

Let 𝑤𝑤𝑖𝑖
(𝑡𝑡) be the local model parameters of participant i at the t-th round. The global 

model is updated by performing a weighted average of all local models: 
𝑤𝑤(𝑡𝑡) = 1

𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1 �

|𝐷𝐷𝑖𝑖|
∑  𝑁𝑁
𝑗𝑗=1 |𝐷𝐷𝑗𝑗|

⋅ 𝑤𝑤𝑖𝑖
(𝑡𝑡)�          (6) 

Where 𝑁𝑁 is the number of participants, |𝐷𝐷𝑖𝑖| is the size of the local dataset of partic-
ipant 𝑖𝑖, and 𝑤𝑤𝑖𝑖

(𝑡𝑡) is the local model weights after the tt-th round of training. 
After each round of training, each participant uploads its updated model parameters 

to a central server or blockchain for verification. The server or blockchain aggregates all 
uploaded local models to generate the global model, which is then distributed back to all 
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participants for the next training round. The FedAvg algorithm ensures that the local up-
dates are aggregated fairly based on the data size, and prevents any data leakage in a 
centralized training setup.  

The algorithm flow of FedAvg is shown in Figure 3. 

 
Figure 3. Algorithmic Flow of FedAvg. 

2.3.3. Model Update Cycle and Coordination Mechanism 
The model update cycle and coordination mechanism are crucial for maintaining the 

stability and collaboration of federated learning. In this study, we adopt a periodic update 
mechanism. Each participant performs several rounds of local training on its own dataset, 
and after completing the training, the local model parameters are uploaded to the server 
or blockchain for aggregation. 

The local training and global update cycles are coordinated as follows: 
1) Local training: Each participant trains its local model over several rounds using 

its local dataset 𝐷𝐷𝑖𝑖. The training process is independent, and no data exchange 
occurs between participants. 

2) Model upload: After local training, the participant uploads the updated model 
parameters 𝑤𝑤𝑖𝑖

(𝑡𝑡) to the blockchain or central server for validation. 
3) Global aggregation: The server or blockchain performs weighted averaging of 

the uploaded local models to generate the new global model 𝑤𝑤(𝑡𝑡), which is then 
distributed to all participants. 

4) Model distribution: Once the global model is updated, the new global model is 
distributed back to all participants for the next round of training. 

The update cycle ensures that all participants collaborate in training the model, and 
the use of blockchain ensures the privacy and security of the model updates. The synchro-
nization of local training and global model updates is achieved through the coordination 
between the server or blockchain, which manages the training cycles and maintains fair-
ness. 

2.3.4. Smart Contract and Encryption Algorithm 
In this section, we describe in detail how differential privacy and smart contracts are 

employed in the blockchain-based federated learning framework to ensure the security, 
transparency, and data privacy protection of the supply chain credit risk assessment 
model. Differential privacy is used to protect the local data privacy of each participant, 
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while the smart contract is responsible for verifying the legality of model updates, con-
trolling the model upload process, and implementing an incentive mechanism. 

1) Differential privacy noise injection mechanism 
To safeguard participant privacy, we apply differential privacy to inject noise into 

model parameters for each local model update. Specifically, before each model parameter 
upload, the participant adds noise to its local model parameters 𝑊𝑊𝑖𝑖 according to the La-
place mechanism. Assuming the privacy budget is 𝜖𝜖 and the model parameter sensitivity 
is 𝛥𝛥, noise 𝜂𝜂 is drawn from a Laplace distribution, and the noise scale is 𝑏𝑏 = Δ

𝜖𝜖
. The for-

mula is as follows: 
𝑊𝑊�𝑖𝑖 = 𝑊𝑊𝑖𝑖 + 𝜂𝜂, 𝜂𝜂 ∼ Laplace(0, Δ

𝜖𝜖
)         (7) 

Where 𝑊𝑊𝑖𝑖 is the local model parameter of participant ii, and 𝑊𝑊�𝑖𝑖 is the noised model 
parameter. Through differential privacy, each participant's contribution does not reveal 
sensitive information about its local data, and the impact of each model update is con-
strained within a controllable range, effectively protecting participant data privacy. 

2) Application of smart contracts 
In this study, the smart contract is deployed on the Hyperledger Fabric blockchain 

platform and is primarily used for model update verification, upload control, and incen-
tive management. The smart contract's functions include: 

a) Model parameter verification: Each model update is verified by the smart con-
tract, ensuring that the uploaded model parameters meet preset format require-
ments and have not been maliciously tampered with. The smart contract checks 
whether the uploaded model parameters fall within reasonable bounds, ensur-
ing that each submitted update conforms to the training specifications. 

b) Upload control: The smart contract controls the upload behavior of each partic-
ipant, ensuring that each participant can only submit one model update per 
training round and preventing unauthorized nodes from uploading model pa-
rameters. For each model submission, it first verifies that the participant has up-
load permission and checks whether the participant has already submitted an 
update during the current round. 

c) Incentive mechanism: To encourage active contributions, the smart contract also 
calculates and distributes rewards. Each participant receives rewards based on 
the quality of its model update and its contribution to the global model. The 
reward allocation is determined by the participant's contribution, such as the 
model's accuracy on a validation set. The formula is as follows: 
𝑅𝑅𝑖𝑖 ← 𝛼𝛼 ⋅ 𝑅𝑅𝑖𝑖 + (1 − 𝛼𝛼) ⋅ 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)         (8) 

Where 𝑅𝑅𝑖𝑖 is the reputation score of participants 𝑖𝑖, 𝛼𝛼 is the weighting coefficient, 
𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is the model accuracy of participant ii in this training round, and 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖) is the rep-
utation increment calculated from the model accuracy. The smart contract allocates re-
wards to each participant based on its reputation score. 

3) Smart contract pseudocode 
The main logic of the smart contract includes verifying the legality of the uploaded 

model parameters, limiting upload frequency, calculating rewards, and distributing them.  
Figure 4 below illustrates the smart contract execution process. 
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Figure 4. The process of executing smart contracts. 

In the pseudocode, (𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑓𝑓𝑣𝑣 𝑓𝑓𝑓𝑓𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓)  and (𝑤𝑤𝑖𝑖𝑓𝑓ℎ𝑖𝑖𝑖𝑖 𝑏𝑏𝑓𝑓𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏)  validate the format 
and value range of the model parameters, while (𝑣𝑣𝑣𝑣𝑓𝑓𝑒𝑒𝑏𝑏𝑓𝑓𝑓𝑓𝑣𝑣 𝑓𝑓𝐴𝐴𝐴𝐴𝑏𝑏𝑣𝑣𝑓𝑓𝐴𝐴𝑣𝑣) computes the ac-
curacy of the submitted model. Functions 𝑓𝑓(𝑓𝑓𝐴𝐴𝐴𝐴) and 𝑔𝑔(𝛥𝛥𝑣𝑣𝑣𝑣𝛥𝛥) calculate the reputation 
increment and reward amounts, respectively. Through smart contract execution, every 
participant's contribution is recorded in a transparent and verifiable manner, and the in-
centive mechanism ensures participants remain motivated and committed. 

4) Synergy between differential privacy and smart contracts 
Differential privacy and smart contracts work together to guarantee both privacy 

protection and regulatory compliance in federated learning. Differential privacy ensures 
that each model update does not leak sensitive data from any participant, while the smart 
contract enforces compliance during the upload process, validates the model updates, and 
fairly distributes rewards based on the quality of the contributions. This design achieves 
privacy protection, transparent model updates, and active multi-party participation, ulti-
mately strengthening the reliability of supply chain credit risk assessment. 

2.4. Model Collaboration and Fusion Mechanism 
In this study, the design of the model collaboration and fusion mechanism aims to 

ensure that multiple parties in the blockchain-federated learning framework can effi-
ciently and transparently perform model training and updates, while ensuring the correct 
aggregation of model parameters and fairness in the participation of multiple parties. This 
section describes the model synchronization mechanism during federated training, the 
interaction process of model parameters and metadata in the blockchain, and the reputa-
tion-based incentive mechanism and node participation control. 

2.4.1. Model Synchronization Mechanism during Federated Training 
In federated learning, multiple parties (such as banks, core enterprises, suppliers, etc.) 

train models based on their local data. After each round of training, the updated model 
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parameters need to be uploaded to the server for aggregation. To ensure the synchroniza-
tion of models among multiple parties, the FedAvg aggregation strategy is adopted. This 
strategy combines the local model parameters from each party by weighted averaging to 
generate a global model. 

In each round of training, each node first performs local training based on its own 
data to obtain local model parameters 𝑊𝑊𝑖𝑖 . These parameters are then uploaded to the 
blockchain via a secure channel for record-keeping. All uploaded model parameters are 
validated by a smart contract to ensure their legality and accuracy. Then, using the Fe-
dAvg algorithm, the server aggregates the local model updates from each party to gener-
ate the global model 𝑊𝑊global, as shown in the following formula: 

𝑊𝑊global = ∑  𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑖𝑖
𝑁𝑁
⋅ 𝑊𝑊𝑖𝑖           (9) 

Where 𝑖𝑖𝑖𝑖 is the local data size of the iii-th node, 𝑁𝑁 is the total data size across all 
nodes, and 𝑊𝑊𝑖𝑖 is the local model parameters of the iii-th node. This method allows the 
models to collaborate effectively while ensuring the precision and consistency of the 
global model under the premise of data privacy protection. 

2.4.2. Interaction of Model Parameters and Metadata in Blockchain 
Blockchain technology plays a crucial role in ensuring the transparency and immu-

tability of model parameter updates in this study. In each round of federated learning 
training, the local model updates from each party are recorded on the blockchain. Specif-
ically, each party uploads the hash value 𝑊𝑊𝑖𝑖(i. e. ,𝐻𝐻(𝑊𝑊𝑖𝑖)) of their local model parameters 
𝑊𝑊𝑖𝑖, along with other relevant metadata (such as node identifier, timestamp, model version) 
to the blockchain. Smart contracts play a key role in this process by verifying the legiti-
macy of the uploaded model parameters and executing necessary control logic. The inter-
action process can be outlined as follows: 

1) Each participating party calculates the hash value 𝐻𝐻(𝑊𝑊𝑖𝑖) of its local model pa-
rameters and uploads it along with other metadata (such as the participant ID, 
timestamp) to the blockchain. 

2) The smart contract verifies whether the uploaded model parameters conform to 
the predefined format and checks for any malicious tampering. 

3) Once the model parameters are validated, the blockchain records the transaction 
and generates a new block for the model update. 

4) The server retrieves the model hashes of all parties from the blockchain, aggre-
gates the local model parameters using the FedAvg algorithm, and generates 
the global model. 

This blockchain-based interaction mechanism not only enhances the transparency of 
data exchange but also ensures the traceability and immutability of the model update pro-
cess, thereby improving the reliability of the supply chain credit risk assessment. 

2.4.3. Reputation Incentive and Node Participation Control 
To encourage active participation from each party and ensure high-quality model 

updates, a reputation-based incentive mechanism is introduced. The smart contract cal-
culates the reputation score 𝑅𝑅𝑖𝑖  for each node based on its contribution in the model train-
ing process (e.g., model accuracy). The reputation score of a node directly affects its future 
participation opportunities and the amount of reward it receives. The implementation of 
the reputation incentive mechanism is as follows: 

1) Reputation score calculation: Each participating node calculates its reputation in-
crement based on the accuracy of the model it uploads. The reputation score 𝑅𝑅𝑖𝑖  
is updated after each round of training as: 
𝑅𝑅𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛼𝛼 ⋅ 𝑅𝑅𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 + (1 − 𝛼𝛼) ⋅ 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)       (10) 

Where 𝛼𝛼 is a weighting coefficient, 𝑅𝑅𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 is the previous round's reputation score, 
and 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖) is the reputation increment calculated from the model's accuracy 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖. 
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2) Upload control and reward distribution: The smart contract controls the upload 
behavior of each participant, ensuring that each party can only submit one model 
update per training round and prevents unauthorized nodes from uploading 
model parameters. Each model update is validated for the participant's upload 
permission and whether they have already submitted an update in the current 
training round. 

Through this mechanism, each node is incentivized to provide higher-quality model 
updates based on its contribution, promoting faster convergence of the model and im-
proving its overall performance. 

3. Results 
3.1. Experimental Design 

This study designs several experiments to evaluate the effectiveness of the blockchain 
and federated learning-based supply chain credit risk assessment model. The experiments 
cover various aspects, including data privacy protection, model accuracy, and the trans-
parency and security of multi-party collaboration. The company financial data used in the 
experiments comes from multiple publicly available financial databases, including Wind 
Information, Bloomberg, and Reuters platforms. These datasets contain 35 financial indi-
cators and 67,900 data records, covering key financial parameters such as the current ratio, 
asset growth rate, and profit growth rate. These data ensure the reliability and repeatabil-
ity of the experimental results. 

The experiments in this study are conducted on the Hyperledger Fabric blockchain 
platform, combined with the federated learning framework. The study simulates collabo-
rative training among multiple roles in the supply chain (such as core enterprises, banks, 
suppliers, etc.) without exchanging data. The experimental platform uses Hyperledger 
Fabric 1.4.1 as the blockchain platform, with Golang for developing smart contracts and 
Python 3.8 for training the federated learning models. All experiments are deployed in a 
Docker environment to ensure the collaboration of different nodes and the protection of 
data privacy. 

To verify the advantages of combining blockchain and federated learning, this study 
compares the proposed federated learning + blockchain model with three other models. 
First, the centralized model concentrates all data on a single server for model training, 
using traditional centralized machine learning methods. In this model, all participants up-
load data to the central server, where the training and updates occur. In the federated 
learning model, each participant independently trains models based on local data and 
then uploads the model parameters to the central server for aggregation. In this method, 
the data remains local and is not exchanged, ensuring data privacy. Finally, the federated 
learning + blockchain model combines blockchain technology within the federated learn-
ing framework for model training and updating. It ensures data privacy protection while 
validating and recording each model update through blockchain, ensuring transparency 
and immutability. 

To comprehensively evaluate the experimental results, this study selects the follow-
ing evaluation metrics. Accuracy is the most commonly used metric to assess the overall 
predictive ability of the model on the test dataset. F1 score considers both precision and 
recall, making it particularly suitable for evaluating models on imbalanced datasets. AUC 
measures the model's classification ability across different thresholds, helping to assess its 
performance in complex scenarios, especially for imbalanced categories. Data leakage rate 
evaluates whether there is a risk of data leakage during the training and updating process, 
which is a key indicator for testing privacy protection capabilities. 
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3.2. Experiment 1: Performance Comparison of Multiple Models in Supply Chain Credit Risk 
Assessment 

This experiment compares the performance of the Centralized Model, Federated 
Learning Model, and Federated Learning + Blockchain Model in supply chain credit risk 
assessment, with a focus on accuracy and privacy protection. The comparison evaluates 
whether the Federated Learning Model can maintain accuracy comparable to the tradi-
tional Centralized Model while preserving data privacy. It also explores the enhanced pri-
vacy protection achieved by integrating Federated Learning and Blockchain. 

In the experiment, the Centralized Model uploads all data to a central server for train-
ing, which has strong fitting capabilities but lacks privacy protection. The Federated 
Learning Model adopts distributed training, with each participant independently training 
a model on local data and only uploading encrypted model parameters for aggregation, 
ensuring data privacy. The Federated Learning + Blockchain Model further integrates 
blockchain technology to ensure data immutability while providing privacy protection 
and recording verification information for each model update. 

As shown in Table 1 and Figure 5, despite the introduction of blockchain technology, 
the Federated Learning + Blockchain model has a slightly lower accuracy than the central-
ized model and the federated learning model. However, its loss convergence is more sta-
ble, showing a better training process. In terms of privacy protection, the Federated Learn-
ing + Blockchain model shows a significant advantage by ensuring the immutability and 
transparency of data, enhancing the credibility of multi-party collaboration and data se-
curity. 

Table 1. Comparison of Results from Multiple Models in Credit Risk Assessment. 

Model Accuracy (%) Loss F1 (%) 
Centralized Model 88.5 0.15 88.6 

Federated Learning Model 87.8 0.17 88.0 
Federated Learning + Blockchain 87.5 0.18 87.5 

 
Figure 5. Loss Rate Curve. 

3.3. Experiment 2: Verification of Multi-Node Collaborative Training and Model Aggregation 
This experiment aims to validate the effectiveness of the proposed Federated Learn-

ing + Blockchain model. The model involves multiple nodes participating collaboratively 
in training. It also evaluates the performance of the FedAvg aggregation strategy. This 
strategy generates a global model under different scenarios. The context is specifically 

https://soapubs.com/index.php/ICSS


AI Digital Technol., Vol. 2 No. 1 (2025)  
 

 
AI Digital Technol., Vol. 2 No. 1 (2025) 14 https://soapubs.com/index.php/AIDT 

supplying chain credit risk assessment. We examine the model's convergence, final per-
formance, and robustness. We do this by varying the number of participating nodes. We 
also simulate heterogeneous (Non-IID) data distributions. 

The experiment focuses on the performance of model aggregation. It examines the 
impact of the number of participating nodes on training outcomes. These outcomes in-
clude convergence speed and final accuracy. The study also investigates the model's ro-
bustness under Non-IID data distributions. Analysis compares the global model from col-
laborative training with local models trained individually by each node. We evaluate im-
provements in accuracy and generalization ability. We also verify the role of model ag-
gregation in effectively integrating multi-party knowledge. This integration aims to en-
hance overall assessment effectiveness. 

In the experiment, we simulate multiple supply chain participants. These partici-
pants act as federated learning nodes (e.g., core enterprises, suppliers, banks). Each node 
uses its local private data to train a model. Nodes submit model updates according to a 
predefined communication protocol. This process might be coordinated via blockchain. 
An aggregation mechanism, such as FedAvg, integrates model contributions from differ-
ent nodes. It generates an updated global model. This global model is then distributed 
back to the nodes for the next training round. This iterative process of collaborative train-
ing and aggregation aims to create a shared global model. The target model should syn-
thesize information from all parties, exhibit superior performance, and possess good gen-
eralization capabilities for credit risk assessment. 

Experiment 2 verified the effectiveness of multi-node training and aggregation 
within the proposed fusion framework. We simulated scenarios with varying node counts 
(N = 3, 5, 10). We also used different data distributions (IID, low Non-IID, high Non-IID). 
The FedAvg algorithm was used for model aggregation. (Parameter exchange relies on 
the framework's design; its trustworthiness is verified in subsequent experiments). The 
experiment primarily evaluated key performance indicators like AUC, Accuracy, and F1-
score. We also analyzed model convergence speed and cross-node performance con-
sistency. Detailed data are presented in Table 2 and Figure 6. The results consistently 
showed that the global model from collaborative training significantly outperformed the 
average performance of models trained locally in isolation. For instance, under the N = 5 
IID setting, the global AUC was 0.852, while the average local AUC was only 0.741. In-
creasing the number of nodes under IID conditions yielded slight performance improve-
ments (e.g., N = 10 IID AUC reached 0.861). However, data heterogeneity (Non-IID) led to 
decreased final model performance (e.g., N = 5 High Non-IID AUC dropped to 0.813). It 
also slowed down convergence. Non-IID conditions also increased performance variance 
among nodes. Nevertheless, the federated learning approach still showed significant ad-
vantages over purely local training. This holds true even under challenging high Non-IID 
conditions.  

Table 2. Comparison Results with Different Number of Nodes and Data Distribution. 

Scenario AUC Accuracy F1-Score Convergence 
Rounds 

Std Dev of Local 
AUCs 

Avg. Local Model 
(N = 5) 

0.741 0.832 0.758 N/A N/A 

N = 3, IID 0.845 0.908 0.855 58 0.011 
N = 5, IID 0.852 0.915 0.866 55 0.009 

N = 10, IID 0.861 0.92 0.871 52 0.008 
N = 5, Low Non-

IID (α = 1) 0.831 0.897 0.84 68 0.025 

N = 5, High Non-
IID (α = 0.1) 

0.813 0.885 0.821 80 0.048 
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N=10, Low Non-
IID (α=1) 

0.839 0.901 0.847 65 0.022 

 
Figure 6. Accuracy Comparison Chart. 

3.4. Experiment 3: Privacy Protection Capability Evaluation 
This experiment aims to quantitatively evaluate the privacy protection capability of 

the Federated Learning model, which integrates differential privacy and blockchain, in 
the application of supply chain credit risk assessment. The focus is on examining the core 
privacy mechanism — differential privacy (Laplace mechanism) applied to local model 
parameters and the design of storing only parameter hash values on the blockchain — in 
preventing sensitive data leakage during collaborative training. By simulating privacy at-
tack scenarios and using relevant privacy metrics, this experiment seeks to measure the 
advantages of this model in protecting participant data privacy, compared to unprotected 
federated learning or traditional centralized methods. 

The evaluation focuses on the following aspects:  
1) The effectiveness of the differential privacy mechanism, which analyzes the de-

gree of protection of the local training data of participants under different pri-
vacy budget ε settings.  

2) The model's resistance to privacy attacks, such as Membership Inference Attacks 
(MIA), especially when the attacker may have access to noisy parameters 𝑤𝑤�𝑖𝑖 in 
transmission or can analyze on-chain metadata and parameter hash records. 

3) The contribution of blockchain's process integrity (through on-chain hash veri-
fication and smart contract rule execution) to prevent malicious behaviors that 
may indirectly lead to privacy leakage (such as invalid parameter injection to 
probe the system). 

In this evaluation, federated learning retains the original data locally, providing basic 
privacy protection. The core evaluation target is the effect of differential privacy (Laplace 
mechanism) on adding noise to local model parameters 𝑤𝑤�𝑖𝑖 before uploading them to gen-
erate noisy parameters 𝑤𝑤�𝑖𝑖. Additionally, the evaluation examines the role of storing only 
parameter hashes 𝐻𝐻(𝑤𝑤�𝑖𝑖) on the blockchain, rather than the parameters themselves, in re-
ducing the risk of direct information leakage on-chain. The evaluation also incorporates 
an analysis of how smart contracts validate the format, range, and upload behavior of 
noisy parameters 𝑤𝑤�𝑖𝑖, ensuring process compliance and increasing the difficulty of manip-
ulation by attackers. The overall privacy protection capability will be assessed by simu-
lating different attackers (for example, an "honest but curious" aggregator or other partic-
ipants attempting to infer information from 𝑤𝑤�𝑖𝑖 or on-chain records), calculating attack 
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success rates, measuring information leakage, and comparing the model's utility loss un-
der different privacy budget 𝜀𝜀 values. 

3.4.1. Privacy-Utility Trade-off Analysis 
This experiment aims to verify the impact of the differential privacy mechanism on 

the global model's utility. We set different privacy budget 𝜀𝜀  values ( 𝜀𝜀 =
0.1, 0.5, 1, 2, 5,𝑓𝑓𝑖𝑖𝑏𝑏 ∞, where 𝜀𝜀 = ∞ represents the baseline without differential privacy 
protection). Under fixed hyperparameters, the FL + DP + Blockchain framework is used 
to train the model and evaluate the global model's main performance metrics on a stand-
ard test set. These metrics include accuracy, F1 score, AUC, and the number of conver-
gence rounds. The experimental results are summarized in Table 3: 

Table 3. Privacy-Utility Trade-off Comparison Results. 

Privacy Budget 
(ε) 

Global Accuracy 
(%) 

Global F1 Score 
(%) 

Global 
AUC 

Convergence 
Rounds 

0.1 82.3 81.5 0.83 90 
0.5 84.7 84 0.85 85 
1 86.1 85.4 0.87 80 
2 87 86.5 0.88 75 
5 87.8 87.1 0.89 70 

∞ (Baseline) 88.5 88 0.91 65 
The Figure 7 shows that as the privacy budget ε increases (i.e., as privacy protection 

decreases), the global model's accuracy, F1 score, and AUC gradually improve, while the 
number of convergence rounds decreases. This indicates that under weaker privacy pro-
tection, the model can achieve higher utility more quickly; conversely, under stronger pri-
vacy protection, the global model's utility slightly decreases. To further illustrate the im-
pact of the privacy budget on model utility, we plotted the following charts: 

 
Figure 7. Accuracy, F1 score and AUC under different privacy budgets. 

3.4.2. Evaluation of Resistance to Membership Inference Attacks 
This experiment aims to evaluate the model's resistance to membership inference at-

tacks after applying a differential privacy mechanism (Laplace mechanism). The experi-
ment trains the model under different privacy budget ε values (0.1, 0.5, 1, 2, 5, and the 
baseline condition without differential privacy, i.e., 𝜀𝜀 = ∞) and then simulates a member-
ship inference attack scenario. The attacker tries to determine whether a specific data rec-
ord was included in the training dataset. The evaluation metric is the success rate of the 
membership inference attack; a lower success rate indicates better privacy protection. 

Table 4 of the experimental results shows that, as the 𝜀𝜀 value increases (i.e., the 
strength of privacy protection decreases), the success rate of membership inference attacks 
significantly increases. For example, when 𝜀𝜀 = 0.1, the attack success rate is only about 
10.5%, while under the baseline condition (𝜀𝜀 = ∞) the success rate rises to 45.0%. This 
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trend indicates that a lower privacy budget can effectively reduce the risk of membership 
inference attacks, thereby enhancing the protection of the participants' data privacy. 

Table 4. Resistance to Membership Inference Attacks under Differential Privacy. 

Privacy Budget (ε) Membership Inference Attack Success Rate (%) 
0.1 10.5 
0.5 15.2 
1 20.4 
2 25.7 
5 31.3 

∞ (Baseline) 45 
The figures clearly display a negative correlation between the privacy budget and the 

attack success rate. This provides a theoretical basis for selecting an appropriate privacy 
budget in practical applications. Overall, the experimental results demonstrate the effec-
tiveness of the differential privacy mechanism in the model, as it significantly reduces the 
success rate of membership inference attacks and plays a key role in protecting data pri-
vacy. Figure 8 shows the success rate under different privacy budgets: 

 
Figure 8. Success Rates under Different Privacy Budgets. 

3.4.3. Contribution of Blockchain Integrity to Privacy Protection 
This experiment aims to verify the role of blockchain mechanisms in preventing ma-

licious attacks. The experiment simulates two attack scenarios, namely tampering attacks 
and replay attacks, to analyze the effectiveness of storing parameter hashes on the block-
chain and verifying them using smart contracts to ensure the integrity of the model update 
process. A qualitative analysis is also provided for the proof-of-existence aspect. This 
demonstrates how immutable records on the blockchain indirectly enhance privacy pro-
tection. 

In the experiment, the FL + DP + Blockchain framework is used. All nodes validate 
the format and range of the noisy model parameters via smart contracts before uploading. 
The proportion of invalid submissions that are successfully rejected is recorded under dif-
ferent attack scenarios. The results show that under tampering attack scenarios, the sys-
tem has a rejection rate of 88.0%, and under replay attack scenarios, the rejection rate is 
89.0%. The proof-of-existence aspect is validated through log records and qualitative anal-
ysis. It shows that the immutable hash records on the blockchain provide credible proof 
of each node's contribution, thereby reducing the risk that malicious nodes gain undue 
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profit through data tampering or replay attacks. Table 5 shows the denial rate data for the 
two main attack scenarios: 

Table 5. Contribution of Blockchain Integrity to Privacy Protection. 

Attack Scenario Detection/Rejection Rate (%) 
Tampering Attack 88 

Replay Attack 89 

4. Discussion 
In this study, the proposed blockchain + federated learning fusion model demon-

strated significant advantages in supply chain credit risk assessment. By integrating 
blockchain technology, the model effectively ensured data privacy and promoted collab-
orative training through the federated learning framework, reducing the risk of data leak-
age. Although the model showed advantages in privacy protection, there was only a lim-
ited improvement in accuracy, especially after introducing blockchain, which caused 
some performance decline. This phenomenon suggests a certain privacy-utility trade-off 
between privacy protection and model performance. As privacy protection is strength-
ened, the accuracy of the model slightly decreases, but in practical applications, the value 
brought by privacy protection is likely more important, especially when dealing with sen-
sitive data and multi-party collaboration where privacy protection is indispensable. 

Compared to traditional centralized models and federated learning models, the 
blockchain + federated learning model not only improved privacy protection but also en-
hanced data collaboration transparency and security. In particular, when handling sensi-
tive data, blockchain ensures data immutability and further enhances model trustworthi-
ness through the mechanism of smart contracts. While privacy protection is ensured, the 
model's accuracy remains within a reasonable range. However, the introduction of block-
chain in this study also brought about challenges such as communication overhead and 
performance trade-offs, especially in high data heterogeneity environments, where the 
model experienced slower convergence and accuracy degradation. 

Future research could further explore optimizing the integration of blockchain and 
federated learning, for example, by improving communication protocols or optimizing 
blockchain performance to minimize its impact on model performance. Additionally, in-
troducing heterogeneous models or multi-task learning techniques may further enhance 
the model's adaptability and generalization ability. 

5. Conclusion 
The blockchain + federated learning fusion model proposed in this study effectively 

improved the accuracy of supply chain credit risk assessment while ensuring data privacy 
protection. By combining differential privacy and blockchain technologies, the model op-
timized data protection mechanisms and reduced the risk of data leakage. Although the 
accuracy of the model slightly decreased due to privacy protection, its advantages in pri-
vacy protection and data collaboration remained evident. 

This study provides a new solution for future supply chain financial systems, partic-
ularly in the context of privacy protection, data transparency, and multi-party collabora-
tion. It demonstrates that the combination of blockchain and federated learning can effec-
tively advance the development of supply chain finance. This research not only enriches 
the academic understanding of privacy protection technologies but also provides valuable 
insights for practical applications. 
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