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Abstract: With the acceleration of global economic integration and the growing focus on sustainable 
development, Environmental, Social, and Governance (ESG) factors have become key standards for 
evaluating a company's long-term value and risk. However, accurately measuring the ESG perfor-
mance of listed companies and identifying the underlying driving factors remains a significant chal-
lenge. This paper proposes a Transformer-based multi-source heterogeneous data fusion model, 
MSformer, which analyzes diverse data, including financial reports, news, social media comments, 
and government announcements. It categorizes the data into three types: time-series structured data, 
time-series structured mapped data, and textual data. The model enhances feature extraction using 
the Spatial Frequency-coordinated Attention Mechanism (SFHA) and employs Support Vector Re-
gression (SVR) for prediction. Experimental results show that MSformer outperforms other ad-
vanced models, achieving an outstanding 87.4% multi-class accuracy and 0.517 average prediction 
error, proving its effectiveness and advantage in ESG prediction. 
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1. Introduction 
With the acceleration of global economic integration and the increasing focus on sus-

tainable development, Environmental, Social, and Governance (ESG) factors have become 
key standards for assessing a company's long-term value and risk. Investors, regulators, 
and the public are placing greater emphasis on corporate performance in these areas. 
However, accurately measuring the ESG performance of listed companies and identifying 
the key drivers behind their performance remains a significant challenge in both academic 
research and practice. 

Traditional ESG evaluation methods, primarily relying on surveys and publicly dis-
closed reports, are costly, lack timeliness, and fail to capture multidimensional infor-
mation comprehensively. Recently, the rapid development of big data technologies and 
machine learning algorithms has provided new approaches to tackle these challenges. By 
analyzing data from diverse sources — such as financial reports, news, social media com-
ments, and government announcements — and integrating it through advanced data pro-
cessing techniques, it is now possible to predict the future ESG performance of listed com-
panies more accurately and uncover the underlying factors that drive it. 
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To address the limitations of existing ESG prediction methods, this study designs a 
Multi-Source Fusion ESG prediction model based on Transformer，named MSformer. 
Specifically, we utilize three types of data: time-series structured data (D1), time-series 
structured mapping data (D2), and textual data (D3). D1 consists of annual company-spe-
cific indicators, such as historical ratings, composite scores, and total market value. D2 
represents the transformation of D1 using a two-dimensional interaction mapper, while 
D3 includes ESG-related news reports retrieved via keyword searches. 

In detail, D1 is processed through two Transformer blocks and an LSTM block, yield-
ing a K dimensional feature vector. D3 is embedded using a large language model and 
mapped into sentiment and discriminative spaces, generating a 2 × K-dimensional vector. 
Meanwhile, D2 undergoes processing by a two-dimensional interaction mapper, produc-
ing an H × K dimensional vector. These three vectors are concatenated along the first di-
mension, forming an input sample of size (H + 3) × K. To further enhance feature extrac-
tion, we propose a Spatial-Frequency Harmonized Attention (SFHA) mechanism replace 
the original attention in Transformer to capture spatial-frequency and interaction features 
from the input. Finally, a support vector regression (SVR) model is employed to generate 
the ESG prediction results. 

2. Related Works 
2.1. ESG Factor Analysis 

In recent years, empirical research on ESG (Environmental, Social, and Governance) 
investment in China has expanded, with studies demonstrating that higher ESG ratings 
are associated with lower market risks and improved financial performance. ESG-based 
investment strategies have been explored in both equity and bond markets, with findings 
indicating that portfolios incorporating ESG factors tend to outperform those with lower 
ESG ratings. Some studies have integrated ESG factors into multi-factor models using ma-
chine learning techniques, such as XGBoost, to enhance stock selection strategies. 

While international research on ESG investment is often tailored to specific markets, 
domestic studies on integrating ESG with machine learning for quantitative investment 
remain limited. Before 2020, the lack of comprehensive ESG disclosures in China posed a 
challenge for applying machine learning models. However, recent policy advancements 
and the availability of expanded datasets from sources such as Wind, China Securities 
Index, and SynTao Green Finance — covering over 4,000 A-share companies — have cre-
ated new opportunities for research. Despite this progress, few studies have systemati-
cally combined ESG factors with machine learning algorithms for quantitative investment 
strategies. This study addresses this gap by empirically analyzing ESG-based stock selec-
tion using Boosting ensemble algorithms. 

2.2. Time Series Forecasting Model 
Time series analysis has been widely applied in various domains, including signal 

processing, financial analysis, and biomedical research, attracting significant attention to 
time series forecasting. Early deep learning models primarily relied on Long Short-Term 
Memory (LSTM) and Recurrent Neural Networks (RNN), which utilize their recurrent 
structures to retain past information and incorporate it into current computations. In con-
trast, the Transformer model processes sequential data without recurrence by leveraging 
a self-attention mechanism, enabling it to capture dependencies across arbitrary positions 
within an input sequence. This characteristic allows the Transformer to efficiently handle 
long time series and facilitates large-scale parallel computation. In recent years, numerous 
Transformer-based advancements have emerged, such as i-Transformer [1], which en-
hances variable embedding by transposing input representations; TimesNet [2], which 
employs a Fourier transform-based decomposition of input tensors into a two-dimen-
sional structure; and PatchTST [3], which segments time series into patches for improved 
processing. In this study, we adopt the Transformer as the backbone model and leverage 
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multi-source heterogeneous data to extract the spatial-frequency and spatial-interaction 
features of ESG data, aiming to enhance predictive performance. 

3. Methodology 
3.1. Multi-Source Heterogeneous Data Fusion 

We categorize the data into three types: time-series structured data (D1), time-series 
structured mapping data (D2), and textual data (D3). The D1 dataset is extracted from 
ESG performance reports of various companies, including Wind ESG ratings and scores 
for listed companies from 2018 to 2023, as well as Menglang ESG ratings for listed com-
panies from 2014 to 2023. The D2 dataset is obtained through a two-dimensional interac-
tion mapper, which will be introduced in B. Two-Dimensional Interaction Mapper. The 
D3 dataset consists of news texts acquired from sources such as Weibo, news websites, 
company official websites, and various statistical center websites, based on keywords re-
lated to the target listed companies. The overall architecture of Multi-Source Heterogene-
ous Data Fusion is shown in Figure 1. 

 
Figure 1. The pipline of Multi-Source Heterogeneous Data Fusion. 

For D1, the data is processed sequentially through two Transformer blocks followed 
by two LSTM blocks: 

𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝐷𝐷1) (1) 

𝑓𝑓𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 = 𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿(𝑥𝑥𝐷𝐷1) (2) 

Among them, 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 represents the feature space obtained after processing with the 
Transformer, while 𝑓𝑓𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 denotes the feature space derived from the LSTM processing. 
Next, these two feature vectors are concatenated and fed into a feature fusion module 
constructed with an MLP: 

𝑓𝑓𝐷𝐷1 = 𝐿𝐿𝐿𝐿𝑀𝑀 − 2𝑙𝑙𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇([𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇; 𝑓𝑓𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿]) (3) 

Where 𝑓𝑓𝐷𝐷1 ∈ 𝑅𝑅1×𝐾𝐾 represents the final encoded representation of the D1 data. Next, 
all D3 text data is fed into the first embedding layer of the ChatGLM model to obtain the 
encoded representations. These representations are then passed through a fully connected 
layer to scale the dimensionality to K: 

𝑓𝑓𝐺𝐺𝐿𝐿𝐿𝐿 = 𝐸𝐸𝑇𝑇𝐸𝐸𝑇𝑇𝐸𝐸𝐺𝐺𝐿𝐿𝐿𝐿(𝑥𝑥𝐷𝐷3) (4) 

𝑓𝑓𝐷𝐷3,1 = 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑓𝑓𝐺𝐺𝐿𝐿𝐿𝐿) (5) 

Where 𝑓𝑓𝐷𝐷3,1 ∈ 𝑅𝑅1×𝐾𝐾 is the first-level feature. Similarly, the raw D3 data is fed into the 
first embedding layer of the QWen model to obtain the second-level feature representa-
tion of 𝑥𝑥𝐷𝐷3 𝑓𝑓𝐷𝐷3,2 ∈ 𝑅𝑅1×𝐾𝐾: 

𝑓𝑓𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇 = 𝐸𝐸𝑇𝑇𝐸𝐸𝑇𝑇𝐸𝐸𝑄𝑄𝑄𝑄(𝑥𝑥𝐷𝐷3) (6) 

𝑓𝑓𝐷𝐷3,2 = 𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑓𝑓𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇) (7) 
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Finally, the two levels of feature representations are concatenated along the first di-
mension of the tensor to obtain the final feature representation of D3: 

𝑓𝑓𝐷𝐷3 = 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(𝑓𝑓𝐷𝐷3,1,𝑓𝑓𝐷𝐷3,2) (8) 

Where 𝑓𝑓𝐷𝐷3 ∈ 𝑅𝑅2×𝐾𝐾 is the final feature space of D3. Finally, the D2 data can be repre-
sented as: 

𝑓𝑓𝐷𝐷2 = 2𝐷𝐷𝐿𝐿𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇(𝑥𝑥𝐷𝐷2) (9) 

Where 𝑓𝑓𝐷𝐷2 ∈ 𝑅𝑅𝐻𝐻×𝐾𝐾 is the final feature space of D2. A detailed introduction to the 2D 
Mapper can be found in the next subsection. By concatenating the final representations of 
the three types of data along the first dimension, we obtain the final representation of each 
input sample: 

𝑥𝑥𝑖𝑖𝑇𝑇 = 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(𝑓𝑓𝐷𝐷1,𝑓𝑓𝐷𝐷3,𝑓𝑓𝐷𝐷2) (10) 

Where 𝑥𝑥𝑖𝑖𝑇𝑇 ∈ 𝑅𝑅(𝐻𝐻+3)×𝐾𝐾 represents the final representation of the input tensor. 

3.2. Two-Dimensional Interaction Mapper 
The 2DMapper is composed of multiple layers with learnable parameters that per-

form various numerical transformations. Specifically, it includes four types of numerical 
transformation layers: fully connected layers, Fourier enhancement layers, logarithmic 
transformation layers, and periodic activation layers. The fully connected layer is a simple 
linear layer, and its mathematical expression is as follows: 

𝑓𝑓𝐿𝐿1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥𝑖𝑖𝑇𝑇 + 𝐸𝐸) (11) 

Where W is the parameter matrix and b is the bias. 𝜎𝜎 is the ReLU function. The log-
arithmic transformation layer applies a logarithmic transformation to each input value 
and performs residual connections: 

𝑓𝑓𝐿𝐿2 = 𝑙𝑙𝑇𝑇𝑙𝑙𝑏𝑏(𝑥𝑥𝑖𝑖𝑇𝑇) + 𝑥𝑥𝑖𝑖𝑇𝑇 (12) 

The Fourier enhancement layer is based on the idea of Fourier transform. It applies a 
cosine activation function to the first half of the values and a sine activation function to 
the second half of the values. Afterward, the GLU activation function is used to fuse the 
features: 

𝑓𝑓𝐿𝐿3 = 𝜎𝜎(𝐶𝐶𝑇𝑇𝑇𝑇(𝑊𝑊𝑐𝑐𝑐𝑐𝑇𝑇𝑥𝑥𝑖𝑖𝑇𝑇/2,𝑓𝑓𝑖𝑖𝑇𝑇𝑇𝑇𝑠𝑠 + 𝐸𝐸) + 𝑇𝑇𝐿𝐿𝑇𝑇(𝑊𝑊𝑇𝑇𝑖𝑖𝑇𝑇𝑥𝑥𝑖𝑖𝑇𝑇/2,𝑇𝑇𝑄𝑄𝑐𝑐𝑐𝑐𝑇𝑇𝑠𝑠 + 𝐸𝐸)) (13) 

𝑥𝑥𝑖𝑖𝑇𝑇/2,𝑓𝑓𝑖𝑖𝑇𝑇𝑇𝑇𝑠𝑠 represents the values from the first half of the input. 𝑥𝑥𝑖𝑖𝑇𝑇/2,𝑇𝑇𝑄𝑄𝑐𝑐𝑐𝑐𝑇𝑇𝑠𝑠 represents 
the second half of the input. The 𝑊𝑊𝑐𝑐𝑐𝑐𝑇𝑇 and 𝑊𝑊𝑇𝑇𝑖𝑖𝑇𝑇 represent the parameter matrices used 
for activation with the cosine and sine functions, respectively. Finally, the periodic activa-
tion layers refer to replacing the activation function of a fully connected layer with a cosine 
function: 

𝑓𝑓𝐿𝐿4 = 𝐶𝐶𝑇𝑇𝑇𝑇(𝑊𝑊2𝑥𝑥𝑖𝑖𝑇𝑇 + 𝐸𝐸) (14) 

The four transformed feature vectors are pairwise concatenated and then passed 
through a multi-layer perceptron (MLP) to reduce their dimensionality and scale them 
to K-dimensional features, generating interaction features 𝑓𝑓𝑖𝑖𝑇𝑇𝑠𝑠,𝑖𝑖. 

𝑓𝑓𝑖𝑖𝑇𝑇𝑠𝑠,𝑖𝑖 = 𝐿𝐿𝐿𝐿𝑀𝑀([𝑓𝑓𝐿𝐿𝐿𝐿; 𝑓𝑓𝐿𝐿𝐿𝐿]) (15) 

Additionally, the individual transformed features are also passed through an MLP 
to scale them to K-dimensional vectors. Finally, all interaction features and the four sepa-
rately transformed features are concatenated together throught the first dimension: 
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𝑓𝑓𝐷𝐷2 = 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(𝑓𝑓𝐿𝐿1, . . . ,𝑓𝑓𝐿𝐿4,𝑓𝑓𝑖𝑖𝑇𝑇𝑠𝑠,1, . . . , 𝑓𝑓𝑖𝑖𝑇𝑇𝑠𝑠,𝑖𝑖) (16) 

Where 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(∙) denoted the operation of concatenation along the first dimension. 
The dimension of 𝑓𝑓𝐷𝐷2 is 𝑅𝑅𝐻𝐻×𝐾𝐾. 

3.3. MSformer 
The MSformer is a specialized architecture that we have designed, based on the Spa-

tial-Frequency Harmonized Attention (SFHA) mechanism, as shown in Figure 2. 

 
Figure 2. The pipline of MSformer. 

Specifically, we first divide each input into n patches of equal size: 

𝑥𝑥𝑖𝑖𝑇𝑇−> 𝑇𝑇 ∗ 𝑀𝑀𝑇𝑇𝐶𝐶𝐶𝐶ℎ ∈ 𝑅𝑅(𝐻𝐻/𝑇𝑇)×(𝐾𝐾/𝑇𝑇) (17) 

For the low-frequency branch of SFHA, we first map the entire patch into a query 
vector Q . Then, the patch is further divided into ww equally sized cells, where each cell 
is individually mapped into a key vector K and a value vector V. Next, the cross-attention 
is computed between Q and the K and V vectors from the w cells. The output is then 
concatenated along the final dimension and serves as the Low-frequency Spatial (LfS) out-
put: 

𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿 = 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(𝐴𝐴𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐿𝐿𝑇𝑇𝑇𝑇(𝑓𝑓𝑝𝑝𝑇𝑇𝑠𝑠𝑐𝑐ℎ,𝑓𝑓𝑐𝑐𝑄𝑄𝑐𝑐𝑐𝑐,𝑖𝑖)) (18) 

𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿  represents the low-frequency output feature space, Attention represents the 
cross-attention operation, and 𝑓𝑓𝑐𝑐𝑄𝑄𝑐𝑐𝑐𝑐,𝑖𝑖 represents the mapping input of the i-th cell. For the 
high-frequency branch, the average pooling mapping value of each patch is used as Q, 
and the pixel value mapping is used as K and V. The cross-attention calculation is per-
formed for each one and concatenated to produce the High-frequency Space output: 

𝑓𝑓𝐻𝐻𝑓𝑓𝐿𝐿 = 𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(𝐴𝐴𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐿𝐿𝑇𝑇𝑇𝑇(𝑓𝑓𝑚𝑚𝑄𝑄𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑠𝑠𝑐𝑐ℎ,𝑖𝑖 ,𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝𝑄𝑄𝑐𝑐,𝐿𝐿)) (19) 

Where 𝑓𝑓𝑚𝑚𝑄𝑄𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑠𝑠𝑐𝑐ℎ,𝑖𝑖 and 𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝𝑄𝑄𝑐𝑐,𝐿𝐿 represent the average pooling of the i-th patch and 
the mapping of the j-th pixel, respectively. Finally, the high-frequency and low-frequency 
outputs are concatenated along the last dimension, fused through an MLP to combine 
features, and then passed through a support vector machine to output the prediction re-
sults: 

𝑙𝑙𝑝𝑝𝑇𝑇𝑄𝑄 = 𝐿𝐿𝑆𝑆𝑅𝑅(𝐿𝐿𝐿𝐿𝑀𝑀([𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿; 𝑓𝑓𝐻𝐻𝑓𝑓𝐿𝐿])) (20) 

The model's training is based on the MAE loss function 

4. Experiments 
In order to fully validate the effectiveness of MSformer and our designed multi-

source data heterogeneous method, we designed three experiments. First, a comparison 
experiment was conducted, comparing with six advanced prediction models. Second, an 
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ablation experiment on multi-source data was performed, where different feature combi-
nations were gradually eliminated to verify the rationality of each feature selection. Fi-
nally, clustering was performed on the feature inputs before SVR, and the driving factors 
of ESG were elaborated. 

4.1. Comparison Experiment  
We selected six models for comparison: Transformer [4], RNN [5], LSTM [6], CNN-

LSTM, iTransformer, and GRU [7], as shown in Table 1. We evaluate the model's perfor-
mance using two metrics: Five-class Accuracy, which represents the classification result 
by mapping the predicted value to [0,1] and dividing it into five equal parts, and the Av-
erage Prediction Error. It can be observed that our model achieves 87.4% and 0.517 for the 
two metrics, respectively. Compared to the worst-performing RNN, which achieves 78.6% 
and 1.990, our model improves by 8.8% and 1.473. Compared to the best-performing 
model, iTransformer, it also improves by 2.8% and 0.325. This demonstrates the superior-
ity of our model in ESG prediction and validates the rationality of our designed multi-
source heterogeneous approach.  

Table 1. In the Comparative Experiment Results. The Best Results are Highlighted in Bold. 

Model 
Metric 

Five-class Accuracy Average Error 
Transformer 81.5% 1.153 

RNN 78.6% 1.990 
LSTM 81.1% 1.672 

CNN-LSTM 83.1% 0.927 
iTransformer 84.6% 0.842 

GRU 79.2% 1.833 
MSformer(Ours) 87.4% 0.517 

4.2. Ablation Experiment 
For the feature space of the three types of data, we randomly removed one or two of 

them, denoted as w/o, and recorded the model accuracy based on different combinations 
of data types, as shown in Table 2. It can be observed that removing the D2 data features 
has the greatest impact, indicating that the 2DMapper can effectively extract deep seman-
tic features from the data. The second most significant impact is from the D3 data, which 
also demonstrates the powerful representational capability of the embedding layer of 
large language models. Additionally, simultaneously removing both D2 and D3 results in 
a decrease of 6.2% in accuracy and an increase of 1.247 in the average prediction error. 

Table 2. Ablation Experiment Results. 

Model 
Metric 

Five-class Accuracy Average Error 
w/o 𝑓𝑓𝐷𝐷1 86.7% 0.872 
w/o 𝑓𝑓𝐷𝐷2 83.5% 1.392 
w/o 𝑓𝑓𝐷𝐷3 85.9% 1.016 

w/o 𝑓𝑓𝐷𝐷1,2 82.4% 1.585 
w/o 𝑓𝑓𝐷𝐷1,3 84.5% 1.506 
w/o 𝑓𝑓𝐷𝐷2,3 81.2% 1.764 

MSformer(Ours) 87.4% 0.517 
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4.3. Driving Factors of ESG 
Finally, we performed clustering on the input features of SVR and used explainable 

machine learning algorithms to extract the feature importance from the clustering results. 
The results are shown in Figure 3. Based on feature ranking, we identified several key 
driving factors for ESG performance. These include environmental indicators like carbon 
emissions, energy efficiency, and renewable energy use; social responsibility factors such 
as employee satisfaction, workplace safety, and community engagement; corporate gov-
ernance aspects like board independence and executive compensation transparency. Fi-
nancial health indicators such as profitability and cash flow stability also play a role, 
alongside market and industry characteristics, policy compliance, technological innova-
tion, and public opinion. Additionally, the impact of regulations, clean tech R&D, and 
media exposure further influence ESG outcomes. 

 
Figure 3. The SHAP of MSformer. 

5. Conclusion 
This paper presents a Transformer-based multi-source heterogeneous data fusion 

model, MSformer, aimed at improving the accuracy of ESG performance prediction for 
listed companies and uncovering driving factors. By integrating time-series structured 
data, mapped data, and textual data into a two-dimensional tensor, the model employs a 
Spatial Frequency-coordinated Attention Mechanism (SFHA) to enhance feature extrac-
tion, and utilizes Support Vector Regression (SVR) for prediction. Experimental results 
show that MSformer outperforms other advanced models, achieving 87.4% in multi-class 
accuracy and 0.517 in average prediction error, confirming its effectiveness. Additionally, 
key driving factors such as environmental indicators, social responsibility, and corporate 
governance were identified, offering valuable insights into ESG performance. These find-
ings provide strong support for corporate evaluation and investment decisions. 
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