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Abstract: The proliferation of coordinated malicious accounts poses significant threats to social
media platform integrity and online discourse quality. This research proposes a comprehensive
detection framework integrating heterogeneous graph neural networks with temporal behavior
analysis to identify coordinated account clusters before large-scale malicious activities manifest.
Our approach constructs multi-relational social graphs capturing follower networks, retweet
cascades, and mention patterns while extracting time-series behavioral features including posting
frequency distributions, coordination windows, and synchronized activity signatures. Experimental
validation on real-world Twitter datasets demonstrates that the proposed framework achieves 89.7%
detection accuracy with 87.3% Fl-score, outperforming baseline methods by 4.3-17.2% across
different comparison approaches. Ablation studies reveal that temporal coordination features
contribute 6.7 percentage points performance improvement while heterogeneous graph structures
provide 5.2 percentage points accuracy gains. The framework enables early warning capabilities
detecting coordinated campaigns 4.7 days before peak malicious activity deployment.

Keywords: graph neural networks; coordinated behavior detection; temporal analysis; social media
security

1. Introduction
1.1. Research Background and Motivation

Social media platforms have become primary channels for information dissemination
and public discourse, simultaneously creating opportunities for coordinated
manipulation campaigns. Recent analyses reveal that sophisticated adversaries deploy
networks of controlled accounts executing synchronized behaviors to amplify
disinformation, manipulate trending topics, and undermine platform trustworthiness.
Traditional detection approaches focusing on individual account characteristics
demonstrate limited effectiveness against coordinated campaigns where accounts exhibit

- human-like behaviors individually but reveal anomalous patterns through collective
analysis. The emergence of graph neural network architectures capable of modeling
complex relationship structures combined with temporal analysis techniques capturing
behavioral dynamics presents novel opportunities for detecting coordination before
large-scale harm materializes [1,2].

The fundamental challenge involves distinguishing genuine community
engagement from artificial coordination while maintaining low false positive rates and
computational efficiency suitable for real-time deployment. Existing methods
predominantly analyze static account features or individual behavioral patterns, failing
to capture the temporal coordination signatures and network-level orchestration
characteristics defining malicious campaigns. Graph-based approaches have shown
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promising results in fraud detection and botnet identification, yet comprehensive
frameworks integrating heterogeneous relationship modeling with temporal coordination
analysis remain underexplored [3,4].

1.2. Research Objectives and Contributions

This research develops a graph-based temporal behavior analysis framework
enabling early detection of coordinated malicious account networks in social media
platforms. The methodology constructs heterogeneous social graphs representing
multiple interaction types including follower relationships, content sharing patterns, and
communication networks. Temporal behavior modeling captures posting frequency
variations, synchronized activity windows, and coordination timing signatures
distinguishing orchestrated campaigns from organic user behaviors.

The research delivers three primary contributions advancing coordinated malicious
account detection. First, a heterogeneous graph construction methodology captures seven
distinct relationship types within social media ecosystems, enabling comprehensive
representation of coordination channels. Second, a temporal coordination feature
extraction framework quantifies behavioral synchronization through statistical measures
including cross-correlation analysis of posting timestamps, burst detection algorithms
identifying coordinated activity spikes, and sequence similarity metrics revealing
coordinated content distribution patterns. Third, experimental validation on real-world
datasets demonstrates detection performance improvements of 4.3-17.2% over baseline
approaches while achieving early warning capabilities detecting campaigns 4.7 days
before peak activity.

2. Related Work
2.1. Traditional Malicious Account Detection Methods

Early detection methodologies concentrated on extracting account-level features
from profile metadata and activity statistics. Research examining location-based social
networks identified malicious accounts through deep learning models processing profile
completeness metrics, friend network density distributions, and geographical mobility
patterns [2]. Studies analyzing privacy-centric mobile platforms revealed that malicious
accounts exhibit distinctive patterns in account creation timing, follower acquisition
velocities, and content posting frequencies compared to legitimate users [5]. These
feature-based approaches achieved detection accuracies ranging from 72.3% to 84.6%
through supervised learning classifiers including Random Forests, Support Vector
Machines, and Gradient Boosting Decision Trees.

Classification frameworks leveraging traditional machine learning algorithms
demonstrated effectiveness in specific detection scenarios. Online promotion abuse
detection systems employed ensemble methods combining behavioral anomaly scores
with social network topology features, achieving precision rates of 78.9% [6]. Systematic
reviews analyzing 127 detection studies across multiple platforms identified that feature
selection strategies significantly impact classification performance, with optimal feature
subsets varying across different malicious account types [7]. Machine learning approaches
face limitations when adversaries adapt behaviors to evade detection heuristics,
motivating exploration of graph-based methods capturing relational patterns difficult to
manipulate individually.

2.2. Graph Neural Network Applications

Graph neural network architectures have emerged as powerful tools for processing
social network data structures. Peripheral-enhanced graph neural network frameworks
aggregate information from both immediate neighbors and peripheral nodes, improving
detection robustness against camouflaged accounts [1]. Compatibility-aware architectures
model heterogeneous integration patterns where malicious accounts establish varying
association intensities with different neighbor types [8]. Domain-aware federated learning
approaches enable collaborative detection across multiple platforms while preserving
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data privacy, employing multi-relational graph neural networks that transfer learned
coordination patterns between different social network ecosystems [9].

2.3. Temporal Behavior Analysis

Temporal dynamics provide critical signals for identifying coordinated manipulation
campaigns. Explainable deep graph neural network frameworks for botnet detection
incorporate temporal propagation patterns, revealing how malicious account clusters
coordinate information dissemination through synchronized timing [3]. Language model
integration with graph neural networks enables semantic understanding of temporal
content evolution, capturing how coordinated campaigns adapt messaging strategies
while maintaining structural coordination [10]. Generalized software toolkits for
coordinated network detection implement time-window-based analysis identifying
accounts exhibiting statistically improbable behavioral synchronization across multiple
temporal scales [4]. These temporal analysis techniques demonstrate that coordination
signatures manifest across multiple time scales including microsecond-level posting
synchronization, hourly activity pattern correlations, and daily campaign orchestration
rhythms.

3. Graph-Based Temporal Detection Framework
3.1. Problem Formulation and Framework Ouverview

The coordinated malicious account detection problem involves analyzing a dynamic
social media ecosystem represented as a temporal heterogeneous graph G = (V, E, T, R)
where V denotes the set of user accounts, E represents interactions between accounts, T
captures temporal information associated with each interaction, and R defines multiple
relationship types characterizing different interaction modalities. The objective centers on
identifying suspicious account clusters C € V exhibiting coordinated behavioral patterns
while minimizing false positives from legitimate community activities.

The framework architecture combines spatial and temporal information processing
pathways. The spatial pathway employs a heterogeneous graph convolutional network
processing relationship structures across seven edge types including follower connections,
retweet cascades, mention networks, hashtag co-usage, URL sharing patterns, reply
interactions, and temporal co-occurrence relationships. The temporal pathway utilizes
bidirectional long short-term memory networks modeling activity sequences for each
account, capturing posting frequency variations, burst patterns, and inter-event timing
distributions. Integration occurs through an attention-based fusion mechanism learning
optimal weightings between structural and temporal evidence. The unified representation
feeds into a multi-task learning objective simultaneously optimizing account-level
classification, coordination cluster detection, and early warning signal generation.

3.2. Graph Construction and Feature Engineering
3.2.1. Heterogeneous Social Graph Modeling

Heterogeneous graph construction begins with data collection spanning user profiles,
interaction records, and content metadata. The follower network layer models directed
social connections F = {(ui, uj) | uj follows ui}, capturing information flow potential.
Retweet cascade edges represent content amplification patterns RT = {(ui, uj, tk) | uj
retweets content from ui at time tk}. Mention networks capture direct communication
patterns M = {(ui, uj, tk) | ui mentions uj in content posted at tk}. Hashtag co-occurrence
edges link accounts using identical hashtags within temporal windows HT = {(ui, uj, h, At)
| ui and uj both use hashtag h within time window At}. URL sharing networks connect
accounts distributing identical links URL = {(ui, uj, I, At) | ui and uj share link 1 within At}.
Reply thread edges model conversational structures RP = {(ui, uj, tk) | ui replies to uj at
time tk}, and temporal co-occurrence relationships link accounts exhibiting synchronized
activity CT = {(ui, uj, At) | ui and uj post within At with frequency exceeding threshold}.
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The graph construction pipeline implements filtering mechanisms removing
spurious edges while preserving coordination-indicative structures. Temporal window
selection employs adaptive thresholding based on platform-specific activity distributions,
with windows ranging from 60-second intervals for microsecond coordination detection
to 24-hour periods capturing daily orchestration patterns. Edge weight assignment
quantifies relationship strength through frequency-based metrics w(eij) =log (1 + freq (eij)),
normalized by expected values under null models of organic user behavior.

3.2.2. Multi-Dimensional Feature Extraction

Feature engineering extracts account-level attributes, structural properties, and
temporal characteristics. Profile features include numerical account properties (followers
count, friends count, statuses count, listed count, favorites count) normalized through z-
score standardization, categorical variables (verified status, default profile indicators, geo-
enabled flags) encoded through learned embeddings, and account age metrics. Semantic
features leverage pre-trained RoBERTa models extracting 768-dimensional embeddings
from profile descriptions and aggregated tweet content.

Structural features quantify network position and connectivity patterns. Degree
centrality measures cd(v) = deg(v) / (IVI - 1) normalize direct connection counts,
betweenness centrality cb(v) = Ls#v#t ost(v) / ost quantifies information flow criticality,
local clustering coefficients cc(v) = 2e(v) / (k(v)(k(v) - 1)) capture triangle density in ego-
networks, and PageRank scores identify influential accounts. Relationship-specific
features compute separate metrics for each edge type.

Temporal features characterize activity patterns and behavioral dynamics. Posting
frequency statistics compute mean, variance, and entropy of inter-post intervals. Hourly
activity distributions generate 24-dimensional vectors representing posting probability
distributions across hours. Burst detection algorithms identify periods where posting
rates exceed 3 standard deviations above baseline. Autocorrelation analysis of posting
timestamps reveals periodicity in activity patterns. Sequence similarity metrics comparing
temporal patterns between account pairs through dynamic time warping distances
identify synchronized behavior.

3.3. Temporal Behavior Pattern Analysis
3.3.1. Time Series Feature Construction

Time series modeling represents account activity as sequential observations
capturing temporal dynamics. Activity sequences discretize observation periods into
fixed intervals (typically 1-hour bins), generating time series xa(t) = [al, a2, ..., aT] where
at represents activity count in interval t. Multiple parallel time series capture different
activity types including original posts, retweets, replies, mentions, and hashtag usage.
Statistical feature extraction includes mean posting rate pa = (1/T) Xt at, standard
deviation oa, skewness, kurtosis, and entropy H(xa) = -Xi p(ai) log p(ai).

Spectral analysis transforms time series into frequency domain representations
through Fast Fourier Transform, identifying dominant periodicities characteristic of
automated posting schedules. Wavelet decomposition provides multi-scale temporal
analysis, separating long-term trends from short-term fluctuations. Change point
detection algorithms identify abrupt shifts in activity patterns, marking campaign
initiation and termination points.

3.3.2. Coordination Pattern Detection

Coordination detection analyzes behavioral synchronization across account groups
through statistical correlation analysis. Cross-correlation functions measure temporal
alignment between account pairs, computing Cxy (1) = Xt x(t)y (t + 1) for time series x and
y at lag 1. Account pairs exhibiting cross-correlation exceeding 0.6 at zero lag indicate
synchronized behavior. Community detection algorithms applied to correlation-weighted
networks identify tightly synchronized clusters.
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Burst co-occurrence analysis identifies coordinated activity spikes by detecting
temporal windows where multiple accounts simultaneously exhibit burst behaviors.
Statistical significance testing through permutation tests compares observed co-
occurrence frequencies against null distributions generated through temporal
randomization. Sequence alignment algorithms apply longest common subsequence
methods to hashtag usage sequences, URL sharing patterns, and content posting
sequences, quantifying coordination through alignment scores. Account pairs sharing
subsequences exceeding 40% of total sequence length indicate coordinated content
distribution strategies, which are structurally instantiated within the heterogeneous social
graph architecture illustrated in Figure 1.
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Figure 1. Heterogeneous Social Graph Architecture and Multi-relational Edge Construction.

The visualization presents a multi-layer network architecture illustrating
heterogeneous graph construction with seven distinct edge types, grounded in the dataset
statistics and temporal coverage characteristics summarized in Table 1. The central
visualization displays a force-directed layout graph with approximately 500 nodes
representing user accounts, color-coded by coordination cluster membership (legitimate
users in blue, coordinated accounts in red, suspicious accounts in orange). Seven edge
type layers render with distinct colors: follower edges (gray), retweet cascades (green),
mention networks (purple), hashtag co-occurrence (yellow), URL sharing (cyan), reply
threads (magenta), and temporal co-occurrence (orange), corresponding to the extracted
feature categories and dimensionality reported in Table 2. Node sizes scale
logarithmically with total degree centrality, and edge widths represent interaction
frequencies. Peripheral subplots include degree distribution histograms for each edge
type, temporal activity heatmaps showing hourly posting patterns for identified clusters,
and a coordination score distribution comparing legitimate versus malicious account
groups.

Table 1. Dataset Statistics and Temporal Coverage Characteristics.

Accou Ob-servat Legitim Malici Avg. Max Cl}lster
Dataset nts Edges ion ate ous Degr Degr ing
Period ee ee Coeff.

Twitter- 487,29 12,437, 18,74

2022 3 685 90 days 463,428 23,865 25.5 ’ 0.184

i 1,384,7

Campai 5,147 14T 0 days 48913 3234 266 8453 0247

gn-A 62

1048



Journal of Science, Innovation & Social Impact

Vol. 1 No. 9 (2026)

C i 3,247,9 12,89
AmPAl - g9 561 45days 84209 5352 363 0.198
gn-B 6
Mixed-
234,78 8,7654 24,57
Platfor 29 60 days 224,138 10,644 37.3 1 0.213
m
Table 2. Extracted Feature Categories and Dimensionality.
Feature Category Features Dimension Description
Numerical and
. . Account metadata, . .
Profile Attributes e . 18 categorical profile
verification status s
characteristics
RoBERTa Pre-trained
Semantic Content embeddings, 768 language model
linguistic features representations
. . Graph topology
Centralit trics, e
Network Structure erratity metres 34 quantification
egonet statistics
across edge types
Posting frequency, Time series
Temporal Patterns burst 127 statistical and
characteristics spectral features
L Cross-correlation, Pairwise
Coordination s
. sequence 45 synchronization
Signals .
alignment measurements
Combined multi- Concatenated
Total Feature Space modal 992 feature vector for
representation classification

4. Experimental Evaluation and Analysis
4.1. Experimental Setup and Datasets

Experimental validation employs four real-world datasets spanning diverse
coordination campaign types and temporal scales. The Twitter-2022 dataset aggregates
487,293 accounts across 90-day observation windows, encompassing multiple organic
communities and three documented coordination campaigns involving political
manipulation, cryptocurrency scams, and coordinated harassment networks. Ground
truth labels derive from platform enforcement actions (23,865 suspended accounts),
honeypot account interactions (4,782 engaged malicious accounts), and manual expert
annotation (1,547 accounts verified through network analysis), with overlapping coverage
across these sources ensuring comprehensive malicious account identification.
Campaign-A focuses on a political influence operation spanning 30 days with 52,147
accounts including 3,234 coordination participants. Campaign-B captures cryptocurrency
pump-and-dump coordination across 45 days with 89,561 accounts including 5,352
coordinated promoters. The Mixed-Platform dataset integrates cross-platform
coordination signals tracking 234,782 linked accounts executing coordinated narratives
across platforms.

Performance assessment employs multiple metrics addressing class imbalance and
operational requirements. Precision P = TP/ (TP + FP) quantifies detected account accuracy,
recall R = TP/ (TP + FN) measures coordination cluster coverage, and F1-score F1 = 2PR/
(P + R) balances precision-recall trade-offs. ROC-AUC integrates true positive and false
positive rates across classification thresholds. Overall detection effectiveness and
comparative performance across baseline methods are summarized in Table 3. Early
warning capability metrics measure detection timing relative to peak campaign activity.
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Table 3. Detection Performance Comparison Across Baseline Methods.

Method Precision Recall Sf(l);e ROC- PR- W]i:;ll}; g
0 0 AUC  AUC
(%) (%) (%) (days)
Random Forest 714 68.9 70.1 0842  0.765 12
(baseline)
GCN (spatial 78.6 763 774 0879  0.821 24
only)
LSTM (temporal 742 79.1 766 0864  0.798 31
only)
GraphSAGE +
ey 84.3 81.7 830 0912  0.873 38
Proposed
89.7 852 873 0934  0.906 47
Framework
Improvement vs +5.4 +35 +43 40022 +0.033 +0.9

Best Baseline

4.2. Performance Evaluation

Comparative evaluation demonstrates substantial improvements over baseline
approaches across all metrics. The Random Forest baseline employing handcrafted
features achieves 70.1% F1-score, representing traditional machine learning approaches.
Graph Convolutional Networks processing spatial structure without temporal modeling
reach 77.4% F1-score, demonstrating graph-based method advantages. LSTM networks
modeling temporal sequences without graph structure achieve 76.6% F1-score, showing
temporal analysis value. GraphSAGE combined with LSTM represents strong baseline
integrating spatial and temporal information, achieving 83.0% F1-score. The proposed
framework outperforms this strong baseline by 4.3% F1-score, reaching 87.3% through
heterogeneous graph modeling and coordination-specific feature engineering.

Detection performance varies across coordination campaign types. Political influence
operations exhibiting subtle coordination through gradual network infiltration achieve
85.1% F1-score, with temporal features proving particularly valuable. Cryptocurrency
scam networks characterized by rapid coordination bursts reach 91.4% F1-score,
benefiting from pronounced temporal synchronization signatures. Cross-platform
coordination campaigns achieve 82.7% F1-score, facing challenges from incomplete cross-
platform relationship data. Early warning capability analysis reveals that temporal
modeling enables detection 4.7 days before peak campaign activity on average. Detection
timing distributions show 73.2% of coordinated accounts identified before campaign
peaks, 18.4% during peak activity periods, and 8.4% post-peak during campaign wind-
down phases, as illustrated by the temporal detection performance and early warning
capability analysis in Figure 2.
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Figure 2. Temporal Detection Performance and Early Warning Capability Analysis.

The visualization presents comprehensive temporal analysis through multiple
integrated subplots. The main panel displays a timeline plot spanning 30 days showing
true campaign activity intensity (gray area chart with organic baseline in light blue and
malicious burst activity in gradient red—orange), overlaid with detection timing markers
(vertical lines color-coded by detection confidence: high confidence green, medium
confidence yellow, low confidence orange). A rolling 24-hour detection rate curve (bold
blue line) illustrates detection sensitivity evolution. The upper subplot presents a heatmap
(24 hours x 30 days) showing detected coordination intensity with color mapping from
white through yellow—orange-red gradients. The lower left subplot shows cumulative
detection curves comparing the proposed framework versus baselines plotting
cumulative percentage of coordinated accounts detected versus days before peak activity.
The lower right subplot presents a confusion matrix heatmap for detection outcomes at
different temporal stages (pre-campaign, early-stage, peak, post-peak), with the
quantitative contribution of individual system components and their impact on detection
performance reported in Table 4.

Table 4. Ablation Study Results on Component Contributions.

Perf
Configuration  Precision (%) Recall (%) F1-Score (%) o orma:nce
Drop (%)
Full 89.7 85.2 87.3 -
Framework
wio Temporal 82.4 78.9 80.6 6.7
Features
w/o
Heterogeneous 84.1 80.3 82.1 -5.2
Edges
w/o
Coordination 78.6 83.4 80.9 -6.4
Detection
w/o Semantic
86.2 83.1 84.6 -2.7
Features
Spatial 78.6 76.3 774 9.9
Structure Only
Temporal 742 79.1 76.6 -10.7
Patterns Only
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4.3. Ablation Study and Analysis

Systematic ablation experiments quantify individual component contributions to
overall detection performance. Removing temporal features including posting frequency
patterns, burst characteristics, and sequence alignment metrics reduces F1-score by 6.7%,
demonstrating temporal coordination signatures provide substantial discriminative
information beyond static structural patterns. Eliminating heterogeneous edge types and
treating all relationships uniformly decreases performance by 5.2%, validating that
different relationship modalities capture complementary coordination signals. Disabling
coordination-specific detection features including cross-correlation analysis and sequence
similarity computations reduces Fl-score by 6.4%, confirming coordination metrics
provide unique information beyond individual account characteristics. Removing
semantic content features causes 2.7% performance degradation, indicating linguistic
patterns contribute moderately compared to structural and temporal signals.

Extreme ablations testing spatial-only and temporal-only configurations reveal
integration necessity. Processing graph structure without temporal modeling achieves
only 77.4% F1-score, while temporal analysis without graph structure reaches 76.6% F1-
score. These results demonstrate spatial and temporal information provide comparable
individual contributions, but optimal performance requires integrated analysis. The
attention-based fusion mechanism learns effective integration strategies, assigning
average weights of 0.54 to structural features and 0.46 to temporal features.

Hyperparameter sensitivity analysis examines robustness to configuration variations.
Graph construction temporal window size impacts detection performance, with optimal
windows spanning 1-4 hours for microsecond coordination detection and 12-24 hours for
campaign-level orchestration. The graph neural network depth exploration reveals
optimal performance with 3—4 convolutional layers, balancing neighborhood information
aggregation against over-smoothing effects. Cross-correlation threshold analysis shows
optimal detection at 0.6 similarity, with lower thresholds generating excessive false
positives and higher thresholds missing moderate coordination, with feature importance
patterns and representative coordination behaviors visualized in Figure 3.
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Figure 3. Feature Importance Analysis and Coordination Pattern Visualization.

The visualization employs a multi-panel layout analyzing feature contributions and
coordination mechanisms. The main panel presents a horizontal bar chart ranking the top
30 features by SHAP importance values, with bars color-coded by feature category
(temporal features in red, structural features in blue, semantic features in green,
coordination features in purple). Bar lengths represent mean absolute SHAP values with
error bars indicating standard deviations. The upper right subplot shows a SHAP
dependence plot for the most important feature (cross-correlation score) displaying SHAP
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values versus feature values, with points color-coded by a secondary feature revealing
interaction effects. The lower left subplot presents a network visualization of detected
coordination clusters, showing 8-12 tightly connected subgraphs with nodes sized by
coordination score and edges weighted by temporal correlation intensity. The lower right
subplot displays temporal correlation matrices as heatmaps with dendrograms indicating
hierarchical clustering structures.

Computational efficiency analysis confirms deployment feasibility. Training the
complete framework on the Twitter-2022 dataset requires 4.7 hours on NVIDIA RTX 3090
GPUs, completing 50 training epochs. Memory consumption peaks at 18.3GB during
batch processing. Inference latency averages 2.7ms per account for batch processing and
8.3ms for individual account queries, enabling near real-time detection. Graph
construction preprocessing requires 23 minutes for complete dataset processing.
Temporal feature extraction executes in parallel at 1,847 accounts per second.

Scalability experiments project performance on larger datasets. Subsampling
experiments reveal that detection performance stabilizes above 60% data utilization.
Extrapolation modeling predicts 89.2% F1-score on million-account datasets, indicating
modest 0.5% degradation. Memory-efficient implementations using GraphSAGE
neighborhood sampling enable processing of 10-million-account graphs within 64GB
memory constraints. Distribution strategies parallelizing graph construction achieve near-
linear speedup with cluster sizes up to 16 nodes.

5. Conclusion and Future Work
5.1. Research Summary

This research developed a comprehensive graph-based temporal behavior analysis
framework for early detection of coordinated malicious accounts in social media
platforms. The methodology integrated heterogeneous graph neural networks modeling
seven relationship types with temporal behavior analysis capturing coordination
signatures across multiple time scales. Experimental validation on real-world datasets
demonstrated 89.7% detection accuracy with 87.3% Fl-score, outperforming baseline
methods by 4.3-17.2% through effective integration of spatial structure and temporal
dynamics. Ablation studies revealed temporal coordination features contribute 6.7
percentage points performance improvement, heterogeneous graph structures provide
5.2 percentage points accuracy gains, and coordination-specific metrics enable 6.4
percentage points additional improvements. The framework achieved early warning
capabilities detecting campaigns 4.7 days before peak activity, providing operational
windows for proactive platform responses.

5.2. Future Research Directions

Future work encompasses three primary directions advancing coordinated malicious
account detection. First, cross-platform coordination analysis requires developing unified
frameworks integrating behavioral signals from multiple social media ecosystems,
capturing coordination campaigns spanning Twitter, Facebook, Reddit, and emerging
platforms. Multi-platform graph construction must address entity resolution challenges
linking accounts across platforms while preserving privacy constraints. Second,
adversarial robustness enhancement involves developing detection methods resistant to
evasion attacks where adversaries deliberately modify coordination patterns to avoid
detection. Adversarial training frameworks and robust feature engineering techniques
insensitive to manipulation tactics warrant investigation. Third, explainability
advancement requires developing interpretable models providing human-
understandable justifications for coordination predictions, essential for platform
moderation decisions and potential legal proceedings. Additional directions include real-
time streaming detection adapting to evolving coordination tactics, semi-supervised
learning reducing labeling requirements, and causality analysis distinguishing
correlation-based coordination from genuine influence propagation.
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