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Abstract: Precision-guided weapons pose a severe threat to critical ground targets, making smoke screening a 

key technology for enhancing target survivability. Traditional smoke deployment methods suffer from limited 

flexibility and restricted coverage. Unmanned aerial vehicles (UAVs), with their high maneuverability, offer an 

ideal platform for precise smoke screening execution. This paper focuses on the spatio-temporal coordinated 

optimization problem for multi-deployment of smoke-generating decoys by UAVs. By establishing a unified 

spatio-temporal coordinate system, precise kinematic models are developed for the UAV, smoke-generating 

decoys, smoke clouds, and missiles. In a single-deployment scenario, an optimization model incorporating UAV 

flight parameters and decoy deployment timing parameters is formulated to maximize effective concealment 

duration. The particle swarm optimization algorithm is employed to derive the optimal deployment strategy 

through spatio-temporal coordination. To address multi-directional, multi-batch threats in combat scenarios, a 

multi-objective optimization model is extended. This model balances objectives including maximizing total 

effective concealment time, minimizing initial concealment time, and minimizing resource consumption. The 

NSGA-II algorithm is employed to obtain a set of Pareto optimal solutions. This research establishes a 

comprehensive technical approach from theoretical modeling to algorithmic solution. Simulation validation 

confirms the model's validity and the algorithm's effectiveness, providing theoretical foundations and 

algorithmic support for the practical application of UAV-mounted smoke decoy systems. 
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1. Introduction 

The rapid advancement of precision-guided weapons has significantly increased the 

vulnerability of critical ground targets, creating a pressing need for effective 

countermeasure strategies. Among these, smoke countermeasures serve as a crucial 

defense mechanism by producing aerosol clouds that obscure optical and infrared 

signatures of targets. By generating clouds with specific density, dispersion, 

and coverage characteristics, smoke countermeasures can effectively disrupt the 

tracking systems of incoming threats, thereby enhancing the survivability of 

assets in complex operational environments. Traditional fixed smoke launchers, 

while widely used, are limited by constrained deployment flexibility, fixed 

coverage areas, and the inability to adapt dynamically to changing threat 

trajectories. These limitations often result in suboptimal protection and leave 

critical targets exposed to adversarial detection and targeting. 

In contrast, unmanned aerial vehicles (UAVs) offer exceptional maneuverability 

and operational flexibility, making them highly suitable platforms for dynamic 

smoke interference deployment. UAVs can navigate complex environments, approach 

specific vantage points, and release countermeasure payloads with high temporal 

and spatial precision. However, leveraging UAVs for smoke deployment introduces a 

series of interdependent optimization challenges. These include planning the UAV 



 

 

flight path, selecting optimal timing for smoke release, determining detonation 

parameters, and ensuring that the resulting smoke clouds effectively block the 

line of sight between incoming munitions and protected targets at critical 

moments. This problem is inherently spatiotemporal and requires coordinated 

consideration of UAV kinematics, smoke grenade dynamics, smoke cloud behavior, 

and missile trajectories. The overall effectiveness of the countermeasure is 

highly sensitive to these deployment parameters, and minor deviations can 

significantly reduce masking performance. 

This research addresses the aforementioned challenges by establishing a 

comprehensive spatiotemporal optimization framework for UAV-based smoke 

countermeasure deployment. The approach integrates models for UAV motion, grenade 

release mechanics, smoke dispersion, and incoming threat trajectories within a 

unified coordinate system. Through rigorous kinematic and dynamic modeling, the 

framework allows for quantitative evaluation of masking effectiveness under any 

given deployment scenario. On this basis, operational and tactical requirements 

are translated into formal optimization objectives and constraints, enabling the 

systematic application of advanced intelligent optimization algorithms to 

identify near-optimal deployment strategies. The proposed methodology not only 

bridges the gap between theoretical modeling and practical implementation but 

also provides a structured foundation for the design, evaluation, and real-time 

application of UAV-based smoke interference systems. By incorporating both the 

physical behavior of deployed countermeasures and the spatiotemporal 

characteristics of threats, this work establishes a technically robust and 

scalable solution for enhancing target survivability in modern threat 

environments. 

2. Theoretical Foundations and Fundamental Assumptions                                      

To ensure the validity, tractability, and solvability of the modeled system, this 

study establishes a set of fundamental assumptions prior to constructing 

mathematical and computational models. These assumptions are designed to capture 

the essential characteristics and primary contradictions inherent in the problem, 

while simplifying secondary or less influential factors. This approach 

facilitates the development of a theoretical framework that accurately reflects 

the underlying physical phenomena and allows for precise mathematical treatment, 

ensuring that subsequent analyses and optimizations remain computationally 

feasible and conceptually clear. 

First, the motion of the incoming missile is idealized. It is assumed that the 

missile maintains uniform linear motion throughout the penetration process, with 

its trajectory precisely aimed at the center of the protected target. This 

assumption intentionally disregards terminal maneuvering, trajectory adjustments, 

or any aerodynamic perturbations, allowing the analysis to focus exclusively on 

the optimization of countermeasure deployment under a predetermined flight path. 



 

 

By reducing the complexity associated with adaptive missile behavior, the study 

can concentrate on evaluating the timing, positioning, and effectiveness of smoke 

interference strategies in a controlled scenario. 

Second, the deployment and behavior of the smoke countermeasures are idealized 

for modeling purposes. The ballistic trajectory of each smoke grenade is assumed 

to follow ideal free-fall motion after release, ignoring the influence of air 

resistance or minor environmental perturbations. Upon detonation, the smoke is 

assumed to form an instantaneous, regular spherical cloud of uniform density, 

descending at a constant vertical speed. Such simplifications transform the 

inherently complex physicochemical processes of smoke diffusion and aerosol 

dispersion into mathematically tractable models with clearly defined geometric 

boundaries and predictable motion laws. This idealization allows the optimization 

framework to focus on the spatial and temporal placement of the smoke cloud 

relative to incoming threats. 

Regarding the UAV platform, it is assumed to possess idealized maneuverability, 

capable of instantaneous adjustments to speed, heading, and altitude in response 

to command inputs. This assumption isolates the optimization problem from 

platform-specific dynamic constraints, such as rotor inertia, acceleration 

limits, or energy consumption, and instead emphasizes the strategic deployment of 

countermeasures. Furthermore, it is assumed that all actions among combat units-

including missiles, UAVs, and decoys-occur independently, without interference 

from coordination delays, communication latency, or operational conflicts. 

Environmental factors, such as wind speed, humidity, and temperature variations, 

which could affect smoke cloud dispersion and density, are temporarily 

disregarded in the current model. Additionally, it is assumed that the initial 

target information provided by detection systems is accurate and reliable, 

ensuring that the UAV can plan deployment strategies based on correct positional 

data. 

Collectively, these assumptions establish a controlled, simplified, and 

analytically manageable research environment. By reducing the problem to its most 

critical components while preserving the essential interactions between incoming 

threats, UAV platforms, and smoke countermeasures, the study lays a rigorous 

foundation for precise kinematic modeling, quantitative evaluation, and 

subsequent optimization of countermeasure strategies. This systematic approach 

ensures that the developed theoretical models remain both scientifically valid 

and practically applicable, forming the groundwork for advanced solution methods 

in UAV-based dynamic smoke interference systems. 

3. Construction and Solution of the Spatio-Temporal Coordination Optimization Model for Single-Dispenser 

Deployment 

The single-deployment scenario serves as the foundation for studying multi-deployment coordination. Its core 



 

 

objective is to optimize the deployment strategy for a single drone carrying one decoy to maximize the effective 

concealment time of the smoke screen against incoming missiles. 

3.1 Kinematic and Obstruction Detection Model 

The model operates within a three-dimensional Cartesian coordinate system. The UAV's flight trajectory is 

determined by its initial position, velocity magnitude, and direction vector. The direction vector is parameterized 

by heading angle and pitch angle, ensuring directional uniqueness. After deployment, the decoy follows a 

parabolic trajectory driven by the initial velocity imparted by the UAV and gravitational acceleration. The smoke 

cloud forms at the detonation point after a preset delay and subsequently moves downward at a constant rate. 

The incoming missile's trajectory is directly determined by its initial position and constant velocity vector. The 

critical step is assessing the effectiveness of the shielding: this is determined by calculating the vertical distance 

between the center of the smoke cloud and the line connecting the missile and the true target at any given 

moment. Effective concealment is achieved when this distance is less than the smoke cloud's effective 

concealment radius and occurs within the effective duration window of the smoke. The total effective 

concealment time is the cumulative sum of all such qualifying moments. 

3.2 Optimization Model and Algorithm Solution 

The optimization objective function in this scenario is defined as maximizing the effective masking duration 

calculated above. The decision variables requiring optimization include the UAV's flight speed, heading angle, 

pitch angle, countermeasure deployment time, and detonation delay time. These variables are mutually coupled 

and collectively influence the quality of masking effectiveness. Model constraints primarily reflect the 

performance limitations of the drone platform (e.g., speed range) and the non-negativity requirement for time. 

Due to the highly nonlinear nature of the model, traditional gradient-based optimization methods are difficult 

to apply. This study employs the Particle Swarm Optimization (PSO) algorithm, an efficient swarm intelligence 

optimization technique, for solution. The PSO algorithm simulates the social behavior of bird flocks, enabling 

particles to search the solution space by following the current optimal particle. It offers advantages such as 

fewer parameters and fast convergence. Each particle represents a set of potential deployment strategy 

parameters (velocity, angle, time). The algorithm iteratively updates particle velocity and position to 

progressively approach the optimal solution. During implementation, grid search optimization was applied to 

the PSO algorithm's internal parameters (inertia weight, learning rate) to enhance performance. The solution 

process demonstrated excellent convergence characteristics. 

 
Figure 1. Convergence Curve 

The convergence curve reveals that the PSO algorithm exhibits extremely rapid convergence in the initial phase, 

with the fitness value rising sharply and covering most of the optimization range, demonstrating the algorithm's 

powerful global search capability. Subsequently, the algorithm enters a stable convergence phase, performing 

fine-tuning adjustments to ultimately find the optimal solution. 

3.3 Results Analysis and Discussion 

Through PSO algorithm optimization, a set of optimal deployment strategy parameters was obtained. Analysis 

of these parameters reveals that the optimal drone speed approaches its performance ceiling, providing greater 



 

 

initial kinetic energy to the decoy and facilitating trajectory adjustment. The specific combination of heading 

and pitch angles ensures the drone occupies the spatial position most effective for intercepting the missile's line 

of sight. The optimized deployment timing and detonation delay precisely control the spatial positioning of the 

smoke cloud at critical moments. The following table presents key parameter configurations under the optimal 

strategy along with brief analysis: 

Table 1. Optimal Parameter Configuration and Analysis for Single-Missile Deployment 

Optimized 

Parameter 
Symbol 

Optimal 

Value 
Physical Meaning and Analysis 

Drone 

Speed 
vu 

133.64 

m/s 

Approaching the drone's maximum speed limit, leveraging high speed to 

achieve a more advantageous tactical position. 

Heading 

Angle 
θ 84.5° 

Indicates the drone's flight direction is close to true north, forming a 

favorable angle with the incoming missile's trajectory. 

Pitch 

Angle 
ϕ -39.7° 

A negative value indicates the drone is diving, aiding in adjusting the 

bomb's trajectory. 

Release 

Time 
td 0.00 s 

Indicates that immediate release upon decision is optimal, emphasizing 

timeliness. 

Detonation 

Delay 
Δt 0.14 s 

An extremely short delay ensures rapid formation of the smoke cloud to 

counter high-speed targets. 

The synergistic relationship among parameters is reflected through their normalized distribution. The velocity 

parameter plays a dominant role, while the angle and time parameters serve as auxiliary regulators, collectively 

forming a highly coordinated optimal solution at the spatiotemporal level. 

 
Figure 2. Parameter Configuration 



 

 

 
Figure 3. Normalized Distribution 

This radar chart visually displays the normalized distribution patterns of the five optimization parameters. The 

velocity parameter exhibits the largest radial distance, highlighting its central role in the optimization process. 

The heading angle parameter follows, while the pitch angle, deployment time, and detonation delay parameters 

exhibit relatively smaller normalized values. Together, they form a fine-tuning mechanism for the dominant 

parameter. This irregular geometric shape reveals the complex coupling relationships among the decision 

variables, with the successful optimization strategy resulting from effectively balancing these interactions. 

4. Multi-Droned Cooperative Deployment Multi-Objective Optimization Model Extension 

While the single-deploy model addresses fundamental deployment challenges for 

UAV-based smoke countermeasures, real-world operational scenarios frequently 

require multiple UAVs to coordinate the release of multiple decoys simultaneously 

or sequentially. Such scenarios may involve threats originating from multiple 

directions, the need to extend the effective shielding duration, or the necessity 

to enlarge the coverage area of smoke interference. These practical 

considerations introduce a more intricate optimization problem, which involves 

determining optimal multi-UAV coordination strategies, deployment sequences, and 

temporal synchronization to achieve maximum operational effectiveness. 

4.1 Necessity of the Target Optimization Model 

In multi-deploy scenarios, the tactical objectives expand beyond a single metric, 

making optimization more complex. While maximizing total effective jamming 

duration remains important, additional objectives must be considered. These 

include: ensuring that initial jamming coverage is established as early as 

possible to address uncertainties in threat arrival; optimizing the transitions 

and overlaps of smoke clouds to eliminate potential coverage gaps; and enhancing 

overall operational reliability, such as maintaining at least two smoke clouds 

simultaneously active during critical time windows. Moreover, resource efficiency 

becomes a significant consideration, including the number of UAV sorties 

deployed, the quantity of chaff or flare dispensers used, and the total energy or 



 

 

operational cost of the UAVs. These objectives often conflict with one another-

for example, pursuing maximum coverage may substantially increase resource 

consumption or operational complexity. Consequently, relying solely on a single 

objective, such as maximizing obscuration duration, fails to capture the multi-

dimensional tactical requirements of realistic operational scenarios. A 

comprehensive multi-objective optimization framework is therefore necessary to 

balance competing performance metrics effectively. 

4.2 Model Framework and Algorithm Selection 

The multi-deploy coordination optimization model represents an extension of the 

single-deploy framework. Its decision variables encompass all relevant UAV flight 

parameters, including velocity, heading angle, and pitch angle, as well as 

deployment timing variables for each decoy, such as release time and detonation 

delay. The fundamental kinematic modeling principles and concealment assessment 

methods established for the single-UAV scenario are retained; however, the multi-

UAV context requires calculation of the combined masking effect produced by all 

active smoke clouds on each missile's line of sight. This introduces additional 

computational complexity, as the model must account for overlapping clouds, 

temporal coverage continuity, and interactions among multiple deployment 

platforms. 

The multi-objective optimization problem is formulated to simultaneously satisfy 

two or more operational goals. Typical objectives may include: 1) maximizing the 

total effective obscuration time across all threats; 2) minimizing the time 

between missile entry into the threat zone and the first effective obscuration, 

thereby reducing vulnerability during initial engagement; and 3) minimizing the 

number of decoys or UAV sorties deployed, thereby conserving operational 

resources. Constraints include UAV performance limitations, safe separation 

distances to prevent collisions, and deployment feasibility under operational 

conditions. 

Solving this class of multi-objective problems aims to obtain a Pareto-optimal 

solution set, which consists of solutions where improvement in one objective 

necessarily results in trade-offs with others. In this study, the NSGA-II (Non-

Dominated Sorting Genetic Algorithm II) is employed due to its proven efficiency 

in handling complex multi-objective evolutionary problems. NSGA-II operates by 

performing non-dominated sorting of candidate solutions and incorporates crowding 

distance calculations to preserve diversity across the solution set. Through 

iterative selection, crossover, and mutation, NSGA-II approximates the Pareto 

frontier, providing decision-makers with a spectrum of optimal deployment 

strategies that balance trade-offs between effectiveness, timeliness, and 

resource consumption. By applying this approach, multi-UAV smoke deployment 

strategies can be systematically designed to enhance both coverage reliability 

and operational efficiency in dynamic threat environments. 



 

 

5. Conclusion 

This paper presents a systematic investigation into the spatiotemporal 

coordination and optimization of UAV-based deployment of multiple smoke-

generating decoys, providing a comprehensive framework for enhancing target 

concealment in dynamic operational environments. The study developed both single-

deployment and multi-deployment models, integrating UAV kinematics, smoke 

dispersion behavior, and missile trajectories within a unified spatiotemporal 

framework to quantitatively evaluate the effectiveness of masking strategies. 

For the single-deployment scenario, the optimization model was successfully 

solved using the particle swarm optimization (PSO) algorithm. The results 

demonstrated that the UAV's velocity approached its performance ceiling, while 

the heading and pitch angles were optimized to form an advantageous interception 

posture, effectively positioning the UAV for precise decoy release. The timing 

parameters, including deployment and detonation delays, were found to be critical 

in ensuring that the generated smoke cloud reached the optimal position at the 

right moment, thereby maximizing the masking effect. These findings validate the 

scientific rigor and practical applicability of the single-deployment model, 

confirming that precise spatiotemporal coordination can significantly improve 

countermeasure efficiency under controlled assumptions. 

In multi-deployment and multi-target scenarios, where multiple UAVs and decoys 

are required to simultaneously address threats from different directions or 

extend coverage duration, the study developed a multi-objective optimization 

model. This model successfully captures the trade-offs between conflicting 

objectives, such as maximizing total effective obscuration, minimizing initial 

exposure time, and reducing resource consumption. The NSGA-II algorithm was 

employed to solve this multi-objective problem, generating a Pareto-optimal 

solution set that provides a spectrum of flexible operational options. This 

approach overcomes the limitations of single-objective models, offering 

commanders a decision-support tool to balance competing tactical priorities under 

varying conditions. 

Analysis of the computational performance indicated that particle swarm 

optimization exhibits rapid convergence and strong capability in single-objective 

optimization problems, while NSGA-II effectively maintains diversity within the 

solution set and ensures proximity to the true Pareto frontier in multi-objective 

contexts. Together, these models and algorithms provide a robust technical 

foundation for UAV-based smoke interference systems, supporting both strategic 

planning and real-time deployment decisions. 

Future research directions include incorporating additional environmental factors 

such as wind speed, humidity, and temperature variations, which may influence 

smoke dispersion dynamics. Further refinement could involve modeling potential 



 

 

missile maneuvering and trajectory deviations to improve the adaptability of UAV 

deployment strategies in more complex operational conditions. Moreover, extending 

the framework to account for multiple UAV platforms operating in coordination 

under stochastic threat patterns could enhance the overall robustness and 

resilience of countermeasure operations. By addressing these factors, the models 

can be progressively refined to support more realistic scenarios and higher 

levels of operational effectiveness, ultimately contributing to the development 

of advanced UAV-based concealment and survivability solutions. 
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