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Abstract: Precision-guided weapons pose a severe threat to critical ground targets, making smoke screening a
key technology for enhancing target survivability. Traditional smoke deployment methods suffer from limited
flexibility and restricted coverage. Unmanned aerial vehicles (UAVs), with their high maneuverability, offer an
ideal platform for precise smoke screening execution. This paper focuses on the spatio-temporal coordinated
optimization problem for multi-deployment of smoke-generating decoys by UAVs. By establishing a unified
spatio-temporal coordinate system, precise kinematic models are developed for the UAV, smoke-generating
decoys, smoke clouds, and missiles. In a single-deployment scenario, an optimization model incorporating UAV
flight parameters and decoy deployment timing parameters is formulated to maximize effective concealment
duration. The particle swarm optimization algorithm is employed to derive the optimal deployment strategy
through spatio-temporal coordination. To address multi-directional, multi-batch threats in combat scenarios, a
multi-objective optimization model is extended. This model balances objectives including maximizing total
effective concealment time, minimizing initial concealment time, and minimizing resource consumption. The
NSGA-II algorithm is employed to obtain a set of Pareto optimal solutions. This research establishes a
comprehensive technical approach from theoretical modeling to algorithmic solution. Simulation validation
confirms the model's validity and the algorithm's effectiveness, providing theoretical foundations and
algorithmic support for the practical application of UAV-mounted smoke decoy systems.
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1. Introduction

The rapid advancement of precision—guided weapons has significantly increased the
vulnerability of critical ground targets, creating a pressing need for effective
countermeasure strategies. Among these, smoke countermeasures serve as a crucial
defense mechanism by producing aerosol clouds that obscure optical and infrared
signatures of targets. By generating clouds with specific density, dispersion,
and coverage characteristics, smoke countermeasures can effectively disrupt the
tracking systems of incoming threats, thereby enhancing the survivability of
assets in complex operational environments. Traditional fixed smoke launchers,
while widely used, are limited by constrained deployment flexibility, fixed
coverage areas, and the inability to adapt dynamically to changing threat
trajectories. These limitations often result in suboptimal protection and leave
critical targets exposed to adversarial detection and targeting.

In contrast, unmanned aerial vehicles (UAVs) offer exceptional maneuverability
and operational flexibility, making them highly suitable platforms for dynamic
smoke interference deployment. UAVs can navigate complex environments, approach
specific vantage points, and release countermeasure payloads with high temporal
and spatial precision. However, leveraging UAVs for smoke deployment introduces a
series of interdependent optimization challenges. These include planning the UAV



flight path, selecting optimal timing for smoke release, determining detonation
parameters, and ensuring that the resulting smoke clouds effectively block the
line of sight between incoming munitions and protected targets at critical
moments. This problem is inherently spatiotemporal and requires coordinated
consideration of UAV kinematics, smoke grenade dynamics, smoke cloud behavior,
and missile trajectories. The overall effectiveness of the countermeasure is
highly sensitive to these deployment parameters, and minor deviations can
significantly reduce masking performance.

This research addresses the aforementioned challenges by establishing a
comprehensive spatiotemporal optimization framework for UAV-based smoke
countermeasure deployment. The approach integrates models for UAV motion, grenade
release mechanics, smoke dispersion, and incoming threat trajectories within a
unified coordinate system. Through rigorous kinematic and dynamic modeling, the
framework allows for quantitative evaluation of masking effectiveness under any
given deployment scenario. On this basis, operational and tactical requirements
are translated into formal optimization objectives and constraints, enabling the
systematic application of advanced intelligent optimization algorithms to
identify near—optimal deployment strategies. The proposed methodology not only
bridges the gap between theoretical modeling and practical implementation but
also provides a structured foundation for the design, evaluation, and real-time
application of UAV-based smoke interference systems. By incorporating both the
physical behavior of deployed countermeasures and the spatiotemporal
characteristics of threats, this work establishes a technically robust and
scalable solution for enhancing target survivability in modern threat
environments.

2. Theoretical Foundations and Fundamental Assumptions

To ensure the validity, tractability, and solvability of the modeled system, this
study establishes a set of fundamental assumptions prior to constructing
mathematical and computational models. These assumptions are designed to capture
the essential characteristics and primary contradictions inherent in the problem,
while simplifying secondary or less influential factors. This approach
facilitates the development of a theoretical framework that accurately reflects
the underlying physical phenomena and allows for precise mathematical treatment,
ensuring that subsequent analyses and optimizations remain computationally
feasible and conceptually clear.

First, the motion of the incoming missile is idealized. It is assumed that the
missile maintains uniform linear motion throughout the penetration process, with
its trajectory precisely aimed at the center of the protected target. This
assumption intentionally disregards terminal maneuvering, trajectory adjustments,
or any aerodynamic perturbations, allowing the analysis to focus exclusively on
the optimization of countermeasure deployment under a predetermined flight path.



By reducing the complexity associated with adaptive missile behavior, the study
can concentrate on evaluating the timing, positioning, and effectiveness of smoke
interference strategies in a controlled scenario.

Second, the deployment and behavior of the smoke countermeasures are idealized
for modeling purposes. The ballistic trajectory of each smoke grenade is assumed
to follow ideal free—-fall motion after release, ignoring the influence of air
resistance or minor environmental perturbations. Upon detonation, the smoke is
assumed to form an instantaneous, regular spherical cloud of uniform density,
descending at a constant vertical speed. Such simplifications transform the
inherently complex physicochemical processes of smoke diffusion and aerosol
dispersion into mathematically tractable models with clearly defined geometric
boundaries and predictable motion laws. This idealization allows the optimization
framework to focus on the spatial and temporal placement of the smoke cloud
relative to incoming threats.

Regarding the UAV platform, it is assumed to possess idealized maneuverability,
capable of instantaneous adjustments to speed, heading, and altitude in response
to command inputs. This assumption isolates the optimization problem from
platform—specific dynamic constraints, such as rotor inertia, acceleration
limits, or energy consumption, and instead emphasizes the strategic deployment of
countermeasures. Furthermore, it is assumed that all actions among combat units—
including missiles, UAVs, and decoys—occur independently, without interference
from coordination delays, communication latency, or operational conflicts.

Environmental factors, such as wind speed, humidity, and temperature variations,
which could affect smoke cloud dispersion and density, are temporarily
disregarded in the current model. Additionally, it is assumed that the initial
target information provided by detection systems is accurate and reliable,
ensuring that the UAV can plan deployment strategies based on correct positional
data.

Collectively, these assumptions establish a controlled, simplified, and
analytically manageable research environment. By reducing the problem to its most
critical components while preserving the essential interactions between incoming
threats, UAV platforms, and smoke countermeasures, the study lays a rigorous
foundation for precise kinematic modeling, quantitative evaluation, and
subsequent optimization of countermeasure strategies. This systematic approach
ensures that the developed theoretical models remain both scientifically valid
and practically applicable, forming the groundwork for advanced solution methods
in UAV-based dynamic smoke interference systems.

3. Construction and Solution of the Spatio-Temporal Coordination Optimization Model for Single-Dispenser
Deployment
The single-deployment scenario serves as the foundation for studying multi-deployment coordination. Its core



objective is to optimize the deployment strategy for a single drone carrying one decoy to maximize the effective
concealment time of the smoke screen against incoming missiles.

3.1 Kinematic and Obstruction Detection Model

The model operates within a three-dimensional Cartesian coordinate system. The UAV's flight trajectory is
determined by its initial position, velocity magnitude, and direction vector. The direction vector is parameterized
by heading angle and pitch angle, ensuring directional uniqueness. After deployment, the decoy follows a
parabolic trajectory driven by the initial velocity imparted by the UAV and gravitational acceleration. The smoke
cloud forms at the detonation point after a preset delay and subsequently moves downward at a constant rate.
The incoming missile's trajectory is directly determined by its initial position and constant velocity vector. The
critical step is assessing the effectiveness of the shielding: this is determined by calculating the vertical distance
between the center of the smoke cloud and the line connecting the missile and the true target at any given
moment. Effective concealment is achieved when this distance is less than the smoke cloud's effective
concealment radius and occurs within the effective duration window of the smoke. The total effective
concealment time is the cumulative sum of all such qualifying moments.

3.2 Optimization Model and Algorithm Solution

The optimization objective function in this scenario is defined as maximizing the effective masking duration
calculated above. The decision variables requiring optimization include the UAV's flight speed, heading angle,
pitch angle, countermeasure deployment time, and detonation delay time. These variables are mutually coupled
and collectively influence the quality of masking effectiveness. Model constraints primarily reflect the
performance limitations of the drone platform (e.g., speed range) and the non-negativity requirement for time.
Due to the highly nonlinear nature of the model, traditional gradient-based optimization methods are difficult
to apply. This study employs the Particle Swarm Optimization (PSO) algorithm, an efficient swarm intelligence
optimization technique, for solution. The PSO algorithm simulates the social behavior of bird flocks, enabling
particles to search the solution space by following the current optimal particle. It offers advantages such as
fewer parameters and fast convergence. Each particle represents a set of potential deployment strategy
parameters (velocity, angle, time). The algorithm iteratively updates particle velocity and position to
progressively approach the optimal solution. During implementation, grid search optimization was applied to
the PSO algorithm's internal parameters (inertia weight, learning rate) to enhance performance. The solution
process demonstrated excellent convergence characteristics.

PSO Algorithm Convergence Analysis
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Figure 1. Convergence Curve
The convergence curve reveals that the PSO algorithm exhibits extremely rapid convergence in the initial phase,
with the fitness value rising sharply and covering most of the optimization range, demonstrating the algorithm's
powerful global search capability. Subsequently, the algorithm enters a stable convergence phase, performing
fine-tuning adjustments to ultimately find the optimal solution.

3.3 Results Analysis and Discussion
Through PSO algorithm optimization, a set of optimal deployment strategy parameters was obtained. Analysis
of these parameters reveals that the optimal drone speed approaches its performance ceiling, providing greater



initial kinetic energy to the decoy and facilitating trajectory adjustment. The specific combination of heading
and pitch angles ensures the drone occupies the spatial position most effective for intercepting the missile's line
of sight. The optimized deployment timing and detonation delay precisely control the spatial positioning of the

smoke cloud at critical moments. The following table presents key parameter configurations under the optimal
strategy along with brief analysis:

Table 1. Optimal Parameter Configuration and Analysis for Single-Missile Deployment

Optimized Optimal . . .
Parameter Symbol Value Physical Meaning and Analysis
Drone " 133.64  Approaching the drone's maximum speed limit, leveraging high speed to
Speed m/s achieve a more advantageous tactical position.
Heading 0 g4 5° Indicates the drone's flight direction is close to true north, forming a
Angle ' favorable angle with the incoming missile's trajectory.
Pitch ° A negative value indicates the drone is diving, aiding in adjusting the
] -39.7 S
Angle bomb's trajectory.
Release e 0.00's Indicates that immediate release upon decision is optimal, emphasizing
Time ' timeliness.
Detonation B An extremely short delay ensures rapid formation of the smoke cloud to
t 0.14s .
Delay counter high-speed targets.

The synergistic relationship among parameters is reflected through their normalized distribution. The velocity
parameter plays a dominant role, while the angle and time parameters serve as auxiliary regulators, collectively
forming a highly coordinated optimal solution at the spatiotemporal level.
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Figure 3. Normalized Distribution
This radar chart visually displays the normalized distribution patterns of the five optimization parameters. The
velocity parameter exhibits the largest radial distance, highlighting its central role in the optimization process.
The heading angle parameter follows, while the pitch angle, deployment time, and detonation delay parameters
exhibit relatively smaller normalized values. Together, they form a fine-tuning mechanism for the dominant
parameter. This irregular geometric shape reveals the complex coupling relationships among the decision
variables, with the successful optimization strategy resulting from effectively balancing these interactions.

4. Multi-Droned Cooperative Deployment Multi-Objective Optimization Model Extension

While the single—deploy model addresses fundamental deployment challenges for
UAV-based smoke countermeasures, real-world operational scenarios frequently
require multiple UAVs to coordinate the release of multiple decoys simultaneously
or sequentially. Such scenarios may involve threats originating from multiple
directions, the need to extend the effective shielding duration, or the necessity
to enlarge the coverage area of smoke interference. These practical
considerations introduce a more intricate optimization problem, which involves
determining optimal multi-UAV coordination strategies, deployment sequences, and
temporal synchronization to achieve maximum operational effectiveness.

4.1 Necessity of the Target Optimization Model

In multi—-deploy scenarios, the tactical objectives expand beyond a single metric,
making optimization more complex. While maximizing total effective jamming
duration remains important, additional objectives must be considered. These
include: ensuring that initial jamming coverage is established as early as
possible to address uncertainties in threat arrival; optimizing the transitions
and overlaps of smoke clouds to eliminate potential coverage gaps; and enhancing
overall operational reliability, such as maintaining at least two smoke clouds
simultaneously active during critical time windows. Moreover, resource efficiency
becomes a significant consideration, including the number of UAV sorties
deployed, the quantity of chaff or flare dispensers used, and the total energy or



operational cost of the UAVs. These objectives often conflict with one another—
for example, pursuing maximum coverage may substantially increase resource
consumption or operational complexity. Consequently, relying solely on a single
objective, such as maximizing obscuration duration, fails to capture the multi-—
dimensional tactical requirements of realistic operational scenarios. A
comprehensive multi—-objective optimization framework is therefore necessary to
balance competing performance metrics effectively.

4.2 Model Framework and Algorithm Selection

The multi—deploy coordination optimization model represents an extension of the
single—deploy framework. Its decision variables encompass all relevant UAV flight
parameters, including velocity, heading angle, and pitch angle, as well as
deployment timing variables for each decoy, such as release time and detonation
delay. The fundamental kinematic modeling principles and concealment assessment
methods established for the single-UAV scenario are retained; however, the multi-
UAV context requires calculation of the combined masking effect produced by all
active smoke clouds on each missile’s line of sight. This introduces additional
computational complexity, as the model must account for overlapping clouds,
temporal coverage continuity, and interactions among multiple deployment
platforms.

The multi-objective optimization problem is formulated to simultaneously satisfy
two or more operational goals. Typical objectives may include: 1) maximizing the
total effective obscuration time across all threats; 2) minimizing the time
between missile entry into the threat zone and the first effective obscuration,
thereby reducing vulnerability during initial engagement; and 3) minimizing the
number of decoys or UAV sorties deployed, thereby conserving operational
resources. Constraints include UAV performance limitations, safe separation
distances to prevent collisions, and deployment feasibility under operational
conditions.

Solving this class of multi-objective problems aims to obtain a Pareto—optimal
solution set, which consists of solutions where improvement in one objective
necessarily results in trade—offs with others. In this study, the NSGA-II (Non—
Dominated Sorting Genetic Algorithm II) is employed due to its proven efficiency
in handling complex multi—objective evolutionary problems. NSGA-II operates by
performing non—dominated sorting of candidate solutions and incorporates crowding
distance calculations to preserve diversity across the solution set. Through
iterative selection, crossover, and mutation, NSGA-II approximates the Pareto
frontier, providing decision—makers with a spectrum of optimal deployment
strategies that balance trade—offs between effectiveness, timeliness, and
resource consumption. By applying this approach, multi-UAV smoke deployment
strategies can be systematically designed to enhance both coverage reliability
and operational efficiency in dynamic threat environments.



5. Conclusion

This paper presents a systematic investigation into the spatiotemporal
coordination and optimization of UAV-based deployment of multiple smoke-—
generating decoys, providing a comprehensive framework for enhancing target
concealment in dynamic operational environments. The study developed both single-
deployment and multi-deployment models, integrating UAV kinematics, smoke
dispersion behavior, and missile trajectories within a unified spatiotemporal
framework to quantitatively evaluate the effectiveness of masking strategies.

For the single—deployment scenario, the optimization model was successfully
solved using the particle swarm optimization (PSO) algorithm. The results
demonstrated that the UAV' s velocity approached its performance ceiling, while
the heading and pitch angles were optimized to form an advantageous interception
posture, effectively positioning the UAV for precise decoy release. The timing
parameters, including deployment and detonation delays, were found to be critical
in ensuring that the generated smoke cloud reached the optimal position at the
right moment, thereby maximizing the masking effect. These findings validate the
scientific rigor and practical applicability of the single—-deployment model,
confirming that precise spatiotemporal coordination can significantly improve
countermeasure efficiency under controlled assumptions.

In multi—-deployment and multi-target scenarios, where multiple UAVs and decoys
are required to simultaneously address threats from different directions or
extend coverage duration, the study developed a multi-objective optimization
model. This model successfully captures the trade—offs between conflicting
objectives, such as maximizing total effective obscuration, minimizing initial
exposure time, and reducing resource consumption. The NSGA-II algorithm was
employed to solve this multi-objective problem, generating a Pareto—optimal
solution set that provides a spectrum of flexible operational options. This
approach overcomes the limitations of single-objective models, offering
commanders a decision—support tool to balance competing tactical priorities under
varying conditions.

Analysis of the computational performance indicated that particle swarm
optimization exhibits rapid convergence and strong capability in single-objective
optimization problems, while NSGA-II effectively maintains diversity within the
solution set and ensures proximity to the true Pareto frontier in multi—objective
contexts. Together, these models and algorithms provide a robust technical
foundation for UAV-based smoke interference systems, supporting both strategic
planning and real—-time deployment decisions.

Future research directions include incorporating additional environmental factors
such as wind speed, humidity, and temperature variations, which may influence
smoke dispersion dynamics. Further refinement could involve modeling potential



missile maneuvering and trajectory deviations to improve the adaptability of UAV
deployment strategies in more complex operational conditions. Moreover, extending
the framework to account for multiple UAV platforms operating in coordination
under stochastic threat patterns could enhance the overall robustness and
resilience of countermeasure operations. By addressing these factors, the models
can be progressively refined to support more realistic scenarios and higher
levels of operational effectiveness, ultimately contributing to the development
of advanced UAV-based concealment and survivability solutions.
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