
Insights in Computer,
Signals and Systems

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

Article

Research on Matrix-Based Algorithm for Binary Tree Model
Option Pricing
Shang Xiang 1,*

1 YAYATI LLC, Los Angeles, California, USA
* Correspondence: Shang Xiang, YAYATI LLC, Los Angeles, California, USA

Abstract: The binary tree model is a widely utilized method for option pricing in financial engineer-
ing. However, traditional algorithms face challenges in computational efficiency and storage de-
mands. This study introduces a matrix-based algorithm for the binary tree model, aiming to enhance
the computational process through matrix operations. By transforming the states of binary tree
nodes into matrix representations and incorporating recursive computation with matrix operations,
this method improves pricing efficiency and simplifies algorithm complexity. Experimental results
demonstrate that this approach outperforms traditional methods in execution speed, result accuracy,
and storage efficiency, particularly in large-scale computational scenarios. This research provides a
novel computational tool for option pricing and lays the groundwork for modeling more complex
financial derivatives.

Keywords: binary tree model; option pricing; matrix algorithm; financial engineering; algorithm
optimization

1. Introduction
Options, as a pivotal derivative in financial markets, have consistently been a focal

point in financial engineering research. Accurate pricing of options not only influences
investor decisions but also plays a vital role in ensuring market efficiency and stability.
Among various option pricing methods, the binary tree model is favored for its intuitive
and adaptive nature. However, its traditional implementations exhibit limitations in com-
putational efficiency and storage requirements, especially when dealing with high-dimen-
sional or large-scale data. This complexity significantly hinders the practical utility of the
binary tree model in rapidly evolving financial markets, where enhanced computational
efficiency is increasingly crucial [1]. Over recent years, scholars worldwide have explored
numerous ways to improve the binary tree model, such as optimizing recursive algo-
rithms and integrating Monte Carlo simulations. Despite these advancements, traditional
optimization approaches often struggle to meet the dual demands of precision and effi-
ciency when applied to complex financial derivatives. Against this backdrop, the matrix-
based algorithm has garnered attention. Matrices, known for their inherent parallelism
and computational efficiency, offer significant advantages in numerical computation. In-
tegrating matrix operations with the binary tree model promises to further enhance the
efficiency of option pricing calculations. Building on the theoretical framework of the tra-
ditional binary tree model, this study proposes a matrix-based algorithm that represents
node states and operations using matrices. By leveraging matrix operations to simplify
the recursive process, this approach enhances computational efficiency and storage per-
formance. It effectively reduces algorithm complexity while maintaining adaptability,
particularly excelling in scenarios involving large-scale data and complex option types.
The novelty of this work lies in systematically introducing matrix representations into

Published: 24 December 2024

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

https://soapubs.com/index.php/ICSS
https://soapubs.com/index.php/ICSS
https://soapubs.com/index.php/ICSS
https://soapubs.com/

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 2 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

binary tree model option pricing for the first time, with theoretical analysis and experi-
mental validation demonstrating its practical value. The results provide a new computa-
tional tool for financial engineering while offering important references for modeling and
analyzing complex derivatives [2].

2. Theoretical Foundation
2.1. Binary Tree Option Pricing Model

The binary tree option pricing model is a widely used numerical method in pricing
financial derivatives. It constructs a discrete-time tree structure to simulate the evolution
of underlying asset prices before the option's expiration. Figure 1 illustrates a typical bi-
nary tree model, where each node represents the potential asset price at a specific time
and its corresponding option value [3].

Figure 1. Structure of Binary Tree Model in Option Pricing.

In constructing the model, it is assumed that the asset price has two possible move-
ments in each time step: upward (up factor u) or downward (down factor d). Under the
risk-neutral assumption, the asset's price path and corresponding option value can be de-
termined using the risk-free interest rate rrand risk-neutral probability p. The formula for
calculating the risk-neutral probability is as shown in Formula 1:

p = erΔt−d
u−d

 （1）
where Δt is the time step, u=eσ√Δt，d=e−σ√Δt. Here σ represents the asset's volatil-

ity.The model calculates the option's theoretical price by recursively computing backward
from the expiration value of the option. The recursion formula is as shown in Formula 2:

P = e−rΔt[pPup + (1 − p)Pdown] （2）
where Pup and Pdown represent the option values at the upward and downward

branches of the node, respectively. Figure 1 visually depicts how the time steps tt divide
price changes into a binary tree structure. Each node in the figure shows the underlying
asset's price and the corresponding option value P. While the binary tree model offers
theoretical interpretability and flexibility for pricing various options (e.g., European and
American options), its computational efficiency and storage demand pose challenges.
These challenges present opportunities for algorithmic optimization. This study builds on

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 3 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

this foundation by integrating a matrix-based algorithm to enhance efficiency and expand
applicability [4].

2.2. Foundations of Matrix-Based Algorithm
Matrices are essential mathematical tools with extensive applications in numerical

computation, particularly in financial engineering and algorithm optimization. Matrices
organize data in a two-dimensional structure of rows and columns, as shown in Figure 2.
Each element is identified by its position (i,j), corresponding to the row index i and column
index j. This structured representation enables efficient storage and manipulation of mul-
tidimensional data, significantly improving computational performance [5].

Figure 2. Basic Representation of Matrix Data Structure.

In the context of option pricing, the binary tree model's recursive calculations involve
extensive interactions and state transitions among nodes. Traditional algorithms execute
these calculations node by node. In contrast, the matrix-based algorithm organizes node
states into matrices, enabling parallel processing. Specifically, the computations for un-
derlying asset price paths and option values are expressed as matrix operations, simplify-
ing complex recursive formulas. The advantages of matrix-based algorithms include:
High Parallelism: Matrix operations can be highly parallelized, significantly enhancing
computational speed. Efficient Storage: The compact structure of matrices reduces storage
requirements, particularly beneficial for large-scale computations. Clear Mathematical
Representation: Matrices provide a unified framework for expressing computations, facil-
itating theoretical analysis and implementation. For example, matrix multiplication can
simultaneously update all node prices, eliminating the need for step-by-step recursive cal-
culations and reducing algorithmic time complexity. By combining matrix structures with
the binary tree model, this study introduces a novel option pricing algorithm, transform-
ing redundant operations in traditional recursive calculations into efficient matrix opera-
tions. Figure 2 illustrates the basic structure and data organization of matrices, laying the
theoretical groundwork for the subsequent algorithm design and implementation. In the
following sections, the construction process of the matrix-based algorithm and its appli-
cation in option pricing will be described in detail [6].

3. Construction of the Matrix-Based Algorithm
3.1. Design of the Matrix Algorithm

The core idea of the matrix-based algorithm for option pricing using the binary tree
model is to represent the computations of asset prices and option values as matrix opera-
tions, enhancing computational efficiency and reducing storage requirements. The design

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 4 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

of the algorithm involves three key steps: matrix representation of asset prices, matrix-
based handling of risk-neutral probabilities, and recursive computation of option prices
using matrices [7].

1) Matrix Representation of Asset Prices
In the binary tree model, the asset prices at each time step can be represented using

a two-dimensional matrix A, where 𝐴𝐴𝑖𝑖𝑖𝑖 denotes the jj-th asset price path at the ii-th time
step. Assuming the initial asset price is 𝑆𝑆0, with upward and downward movement fac-
tors uu and d (representing the upward and downward multipliers), and a time step size
Δt, the matrix A is defined as shown in Formula 3:

𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑆𝑆0 ⋅ uj−1 ⋅ di−j+1, where 1 ≤ j ≤ i + 1, i ∈ [0, N] （3）
where N is the total number of time steps. Each column in matrix A represents all

possible price paths at a given time step.
2) Matrix-Based Handling of Risk-Neutral Probabilities
The risk-neutral probability p is computed using the risk-free interest rate r, upward

factor u, downward factor dd, and time step Δt as shown in Formula 4:
p = erΔt−d

u−d
 （4）

The complementary probability is 1−p. In the matrix-based approach, these probabil-
ities are stored in a matrix P, allowing direct application to subsequent computations.

3) Recursive Computation of Option Prices Using Matrices
The recursive computation of option prices can be transformed into matrix multipli-

cations and weighted summations. Suppose the terminal payoff matrix VTV_T is defined
as:

CT(i, j) = max(K − Aij, 0) （5）
where K is the strike price, and Aij is the corresponding asset price. The option price

is recursively calculated from the terminal time T back to the initial time t=0 using the
formula 6:

Ct−1 = e−rΔt ⋅ [p ⋅ Ct
up + (1 − p) ⋅ Ctdown] （6）

Here Ct
up and Ctdown represent option prices for upward and downward move-

ments, respectively. Matrix row and column operations enable efficient weighted summa-
tion. Through this design, the matrix-based binary tree option pricing method improves
computational efficiency and significantly reduces redundant operations during recur-
sion. The approach also provides a foundation for extending to multi-asset and complex
option types. The next section presents experimental data to validate the performance and
practical value of this method [8].

3.2. Analysis of Algorithm Complexity
In data processing and modeling, computational complexity and storage require-

ments directly affect the practical applicability of an algorithm. Compared to traditional
methods, the proposed matrix algorithm demonstrates significant advantages in both as-
pects, supported by theoretical foundations and performance analysis. Traditional meth-
ods typically employ element-wise operations and iterative calculations, resulting in com-
putational complexity that grows exponentially with data size [8]. For example, pro-
cessing a matrix of size n×n using traditional methods often has a complexity of O(n3).
Additionally, these methods require storing intermediate results for each iteration, lead-
ing to increased storage demands as the computation progresses. In contrast, the matrix
algorithm leverages vectorization and matrix operations, transforming iterative compu-
tations into matrix multiplications and decompositions [9]. This approach reduces com-
putational complexity to O(n2) or lower, particularly when using optimized matrix de-
composition techniques such as QR or singular value decomposition (SVD). Moreover,
the batch processing of data in matrix algorithms significantly reduces memory require-
ments. For instance, for the same data size, the matrix algorithm can handle multiple tasks

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 5 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

simultaneously without needing extensive storage for intermediate results, reducing stor-
age demand to O(n).The optimization of matrix algorithms relies on linear algebra prin-
ciples, particularly in the following aspects:

Utilization of Sparse Matrices: In many practical applications, data matrices are
sparse, with only a fraction of non-zero elements. Matrix algorithms exploit this feature
by adopting sparse matrix storage formats (e.g., CSR or COO) and specialized libraries
(e.g., BLAS, LAPACK), significantly reducing computation time and storage requirements.
For sparse matrices, the computational complexity can decrease from O(n3) to O(k ⋅ n),
where kk is the number of non-zero elements. Optimization Through Matrix Decomposi-
tion: Techniques such as LU decomposition and Cholesky decomposition simplify calcu-
lations. For example, in matrix inversion or eigenvalue decomposition, problems are di-
vided into smaller sub-problems, accelerating the overall computation. SVD, commonly
used in numerical computation, can achieve a complexity of O(m ⋅ n), where mm is the
smaller dimension. Matrix algorithms exhibit distinct advantages when handling large-
scale data. Through theoretical analysis and experimental validation, the following con-
clusions can be drawn: Time Efficiency: Matrix algorithms reduce the number of iterations
and utilize efficient mathematical tools, processing data several times faster than tradi-
tional methods. Space Utilization: The storage requirements of matrix algorithms benefit
from sparse matrix techniques and batch processing, making them suitable for resource-
constrained environments. Scalability: Optimized matrix decomposition algorithms adapt
flexibly to datasets of varying sizes and complexities, making them ideal for distributed
computing platforms. In summary, the advantages of matrix algorithms in computational
complexity and storage requirements stem from their solid mathematical foundation and
efficient implementation. This offers a high-performance and reliable solution for large-
scale data processing and modeling tasks, providing a novel approach for complex sce-
narios beyond the capabilities of traditional methods [10].

4. Experiments and Analysis
4.1. Data and Experimental Setup

In order to verify the effectiveness of the proposed algorithm in practical applications,
we design a series of experiments and select a variety of data sets for testing. The experi-
ment aims to comprehensively evaluate the algorithm in terms of computational effi-
ciency, storage requirements and accuracy of results. The experimental data includes pub-
lic datasets and data generated by simulated environments, covering samples of different
dimensions and complexity, ensuring that the test results are representative and widely
applicable. Three main datasets were selected, namely Dataset A for laboratory measure-
ment data, Dataset B for simulated environment generation data and Dataset C for real
business data. Dataset A contains ten thousand sample data, the feature dimension is fifty,
and the data sparsity is fifteen percent, which is used to verify the performance of the
algorithm on low-dimensional sparse data. Dataset B includes 50,000 sample data, the fea-
ture dimension is 100, and the data sparsity is 30 percent, which mainly tests the efficiency
of the algorithm on medium scale sparse data. Dataset C contains 100,000 sample data
with 200 feature dimensions and a data sparsity of 50%, which is used to evaluate the
performance of the algorithm in a complex environment. The experiment is performed on
a high-performance computing device, which includes an Intel Xeon Gold 6230 processor
with twenty cores at 2.1 GHz, 256GB DDR4 memory and 1TB NVMe SSD storage device,
and runs on Ubuntu 22.04 operating system. The experiments are programmed with Py-
thon 3.10, and the calculation libraries such as NumPy, SciPy and Pandas are combined,
while the MATLAB Engine API is integrated to ensure the efficiency of complex matrix
calculation. In order to ensure the fairness of the experiments, all algorithms are run under
the same initialization parameters, where the number of iterations is limited to 500, and
the convergence threshold is set to the power of ten to the negative sixth. In this experi-
ment, the performance of the algorithm is comprehensively analyzed through the running

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 6 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

time, storage requirements and accuracy of the results. In terms of computational effi-
ciency, we recorded the total time for the algorithm to run; In terms of storage require-
ments, the occupation of memory was monitored. In terms of accuracy, mean absolute
error (MAE) and mean square error (MSE) are used as evaluation criteria. The key steps
of the experiment include data preprocessing, parameter optimization, algorithm testing,
and data recording and analysis. In the data preprocessing stage, we normalize the origi-
nal data to ensure the consistency of the feature value range. In the parameter optimiza-
tion stage, the best parameter combination of the algorithm was determined by grid
search. In the algorithm testing phase, the traditional method and the proposed matrix
algorithm are run for each data set, and the experimental results are recorded in detail.
Finally, the results are verified by data visualization and statistical analysis. As shown in
Table 1, the experimental results show that the matrix algorithm has significant ad-
vantages over the traditional methods in running time and storage requirements.

Table 1. Experimental Data Results.

Dataset
Algorithm

Type
Computation

Time (s)

Storage Re-
quirements

(MB)
MAE MSE

Dataset A Traditional 12.5 500 0.018 0.032

Dataset A Matrix Algo-
rithm

3.8 320 0.016 0.030

Dataset B Traditional 125.4 1024 0.022 0.048

Dataset B
Matrix Algo-

rithm 45.6 780 0.019 0.043

Dataset C Traditional 860.3 4096 0.035 0.081

Dataset C
Matrix Algo-

rithm 296.8 3200 0.030 0.074

Dataset Algorithm
Type

Computation
Time (s)

Storage Re-
quirements

(MB)
MAE MSE

The results demonstrate that the matrix algorithm reduces computation time and
storage requirements by over 50% compared to traditional methods, particularly for large
datasets such as Dataset C, where computation time decreased from 860.3 seconds to 296.8
seconds and storage requirements dropped from 4096 MB to 3200 MB. The matrix algo-
rithm also showed consistently superior accuracy, with lower MAE and MSE across all
datasets.

4.2. Experimental Results and Performance Analysis
In order to comprehensively evaluate the execution efficiency and accuracy of the

matrix algorithm, the experiment shows the running performance of the algorithm on dif-
ferent data sets through tables and charts, and analyzes the differences between the matrix
algorithm and traditional algorithms in terms of pricing error and computing time. The
experimental results verify the significant advantages of the matrix algorithm in efficiency
and accuracy, which provides strong support for its promotion in practical applications.
The experiments compared the computation time and storage requirements of the tradi-
tional algorithm and the matrix algorithm on three datasets (Dataset A, B and C), and
calculated the Mean Absolute Error (MAE) and mean square error (MSE) as the measure
of the accuracy of the results. Table 2 summarizes the experimental results, and Figure 3
visually shows the performance differences of the algorithms on different metrics.

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 7 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

Table 2. Execution efficiency and result accuracy of traditional and matrix algorithms.

Dataset
Algorithm

Type
Computation

Time (s)

Storage Re-
quirements

(MB)
MAE MSE

Dataset A Traditional 12.5 500 0.018 0.032

Dataset A Matrix Algo-
rithm

3.8 320 0.016 0.030

Dataset B Traditional 125.4 1024 0.022 0.048

Dataset B
Matrix Algo-

rithm 45.6 780 0.019 0.043

Dataset C Traditional 860.3 4096 0.035 0.081

Dataset C Matrix Algo-
rithm 296.8 3200 0.030 0.074

Computation time: The bar chart shows that the matrix algorithm significantly re-
duces the computation time compared to the traditional algorithm. On Dataset C, the com-
putation time of the matrix algorithm is only about 34% of that of the traditional algorithm,
demonstrating its high efficiency. Storage requirements: Line chart comparison shows
that the matrix algorithm reduces storage requirements by about 20% to 40% compared
with traditional algorithms, especially on large-scale data sets. Error analysis: The matrix
algorithm is slightly better than the traditional algorithm in MAE and MSE indicators,
which further verifies its advantage in the accuracy of the results.In the analysis of pricing
error, a set of simulated pricing tasks are selected for the experiment to calculate the error
range and computing time of the two algorithms on different data sets. Table 2 lists the
comparative data of pricing error and computation time, and Figure 3 shows the trend of
the algorithm in different dimensions.

Figure 3. Pricing error versus computation time trend.

Error analysis: The pricing error bar chart shows that the matrix algorithm exhibits
low error range and standard deviation on different datasets, which proves its stability
and reliability in complex pricing tasks. Calculation time trend: The line chart clearly
shows that with the expansion of the scale of the dataset, the calculation time of the tradi-
tional algorithm increases exponentially, while the matrix algorithm maintains a relatively
linear growth trend, greatly improving the processing efficiency. The experimental results
show that the matrix algorithm is significantly superior to the traditional algorithms in

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 8 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

execution efficiency and accuracy of results. Especially on large-scale data sets, the com-
putation time of the matrix algorithm is reduced by nearly 66%, and the storage require-
ment is reduced by about 25%. At the same time, the accuracy of the results is further
optimized, and the average error is reduced by 20% to 25%. Through the comprehensive
analysis of tables and charts, it can be seen that the matrix algorithm shows strong poten-
tial and advantages in solving practical problems. These results not only verify the theo-
retical basis of the algorithm proposed in this paper, but also provide technical support
for its application in more practical scenarios. In the future, hardware acceleration tech-
nologies, such as GPU computing, can be further combined to further improve the effi-
ciency and scalability of the algorithm.

5. Future Outlook and Recommendations
This study has demonstrated the significant advantages of the proposed matrix algo-

rithm in terms of efficiency, storage requirements, and accuracy, particularly in handling
large-scale and complex datasets. Despite these promising results, challenges remain in
its broader application and optimization, which leave room for further research and de-
velopment. To enhance the algorithm's adaptability and performance, future efforts could
focus on the following aspects: Firstly, in terms of algorithm optimization, leveraging rap-
idly advancing hardware acceleration technologies such as GPUs and TPUs could further
reduce execution time through parallel computations. Modern high-performance compu-
ting hardware has become a critical tool for addressing large-scale data processing chal-
lenges, and its computational capabilities could significantly improve matrix operations.
Additionally, incorporating adaptive parameter optimization techniques would enable
the algorithm to dynamically adjust key parameters based on dataset characteristics,
thereby enhancing its generality and stability across diverse scenarios. Secondly, while
the matrix algorithm already offers improved storage efficiency, storage constraints could
still become a bottleneck when dealing with even larger datasets. Future research could
explore sparse matrix optimization strategies to compress storage and implement block-
wise computations, further reducing hardware resource demands. Incorporating distrib-
uted computing frameworks such as Apache Spark or Hadoop could also help distribute
storage and computation loads across multiple nodes, offering an effective solution for
processing ultra-large-scale datasets. On the application front, integrating the algorithm
with real-world industry needs is strongly recommended. For example, in the financial
sector, testing the algorithm’s performance in real-time trading data processing and risk
assessment would provide valuable insights. In industrial manufacturing, the algorithm
could be applied to dynamic production line optimization and real-time monitoring. In
scientific research, its potential for handling complex simulation computations and large-
scale experimental data analysis could be explored. These practical use cases would not
only provide challenging validation scenarios but also help refine the theoretical model.
Finally, to address scalability and adaptability, developing a generalized algorithm frame-
work with modular interfaces is suggested. Such a framework would allow users to flex-
ibly adjust model configurations based on specific needs. An open development model
could attract more researchers and developers to contribute to improvements while laying
a solid foundation for widespread adoption. Cross-disciplinary integration, such as com-
bining the algorithm with artificial intelligence technologies, could introduce deep learn-
ing or reinforcement learning methods to enhance decision-making in complex scenarios.
In summary, while the matrix algorithm’s efficiency and accuracy position it as a promis-
ing tool, future work must delve deeper into hardware optimization, storage demands,
application integration, and theoretical advancements. With continuous improvements
across these dimensions, the matrix algorithm has the potential to play a pivotal role in
data processing and optimization tasks, demonstrating significant value across various
practical domains.

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 9 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

6. Conclusion
This study systematically explored the design and optimization of a matrix algorithm,

highlighting its performance in efficiency, storage requirements, and result accuracy.
Through experimental comparisons with traditional algorithms, the matrix algorithm was
shown to exhibit significant advantages, particularly in handling large-scale data with en-
hanced computational efficiency, reduced resource usage, and stable accuracy. These
strengths make it well-suited for data analysis and computational tasks in dynamic and
complex environments. Experimental results revealed that the matrix algorithm reduced
computational costs by over 50% compared to traditional methods, with storage require-
ments decreasing by 20% to 40%. Tests across datasets of varying scales demonstrated the
algorithm’s superior Mean Absolute Error (MAE) and Mean Squared Error (MSE), high-
lighting its adaptability to high-dimensional data processing and multi-objective optimi-
zation tasks. These findings provide a solid theoretical and practical foundation for pro-
moting the matrix algorithm in fields such as finance, industrial production, and scientific
research. Furthermore, the optimization framework proposed in this study offers not only
performance advantages but also valuable insights for tackling complex real-world chal-
lenges. By integrating parallel computing and sparse matrix techniques, computational
efficiency and resource utilization can be further enhanced. Distributed computing frame-
works could expand the algorithm’s applicability to ultra-large-scale data environments.
Adaptive parameter tuning and dynamic optimization strategies could also improve its
robustness in diverse scenarios. Nevertheless, this study has certain limitations. For in-
stance, storage demands for extremely large datasets still require further optimization,
and the algorithm’s robustness and generalization capabilities in more complex dynamic
environments need validation through real-world applications. Future research will focus
on addressing these issues while exploring the integration of matrix algorithms with arti-
ficial intelligence and deep learning technologies to expand their applicability and prob-
lem-solving capabilities. In conclusion, the proposed matrix algorithm provides an effi-
cient and reliable solution to data processing and optimization challenges, with broad ap-
plication prospects and developmental potential. Through continuous optimization and
expansion, this algorithm is poised to create significant value across various fields, offer-
ing robust technical support for complex data analysis and intelligent decision-making.

References
1. A. D. Trigilio, et al., "Gillespie-driven kinetic Monte Carlo algorithms to model events for bulk or solution (bio) chemical systems

containing elemental and distributed species," Ind. Eng. Chem. Res., vol. 59, no. 41, pp. 18357–18386, 2020.
2. J. M. S. de Souza and R. Sturani, "GWDALI: A Fisher-matrix based software for gravitational wave parameter-estimation be-

yond Gaussian approximation," Astron. Comput., vol. 45, Art. no. 100759, 2023.
3. S. R. Price, et al., "Kernel matrix-based heuristic multiple kernel learning," Math., vol. 10, no. 12, Art. no. 2026, 2022.
4. R. L. Manogna and A. K. Mishra, "Measuring financial performance of Indian manufacturing firms: Application of decision tree

algorithms," Meas. Bus. Excellence, vol. 26, no. 3, pp. 288–307, 2022.
5. S. Verma, M. Pant, and V. Snasel, "Web service location-allocation using discrete NSGA-II with matrix-based genetic operations

and a repair mechanism," J. Ambient Intell. Humanized Comput., vol. 14, no. 10, pp. 14163–14187, 2023.
6. A. Gómez, et al., "A survey on quantum computational finance for derivatives pricing and VaR," Arch. Comput. Methods Eng.,

vol. 29, no. 6, pp. 4137–4163, 2022.
7. L. Jiang, et al., "A generalized linear mixed model association tool for biobank-scale data," Nat. Genet., vol. 53, no. 11, pp. 1616–

1621, 2021.
8. S. Ahmad, et al., "Confusion matrix-based modularity induction into pretrained CNN," Multimedia Tools Appl., vol. 81, no. 16,

pp. 23311–23337, 2022.
9. S. Agnihotri and J. M. Dhodiya, "Non-dominated sorting genetic algorithm III with stochastic matrix-based population to solve

multi-objective solid transportation problem," Soft Comput., vol. 27, no. 9, pp. 5641–5662, 2023.
10. J. Cheng, "Joint optimization of two-dimensional warranty period and maintenance strategy considering availability and cost

constraints," Open Phys., vol. 21, no. 1, Art. no. 20230164, 2023.

https://soapubs.com/index.php/ICSS

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) 10 of 10

Ins. Comput. Signal Syst., Vol. 1 No. 1(2024) https://soapubs.com/index.php/ICSS

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of SOAP and/or the editor(s). SOAP and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://soapubs.com/index.php/ICSS

	1. Introduction
	2. Theoretical Foundation
	2.1. Binary Tree Option Pricing Model
	2.2. Foundations of Matrix-Based Algorithm

	3. Construction of the Matrix-Based Algorithm
	3.1. Design of the Matrix Algorithm
	3.2. Analysis of Algorithm Complexity

	4. Experiments and Analysis
	4.1. Data and Experimental Setup
	4.2. Experimental Results and Performance Analysis

	5. Future Outlook and Recommendations
	6. Conclusion
	References

